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Introduction
This is a love letter to the power of swarms.

I arrived in neuroscience after bottoming out in politics and economics as I learned
that studying the emergent dynamics of belief and power was not, in fact, what
those academic disciplines studied. Somehow, my intellectual history professor Bill
Duvall was able to identify that my rudderless interests were pointing towards neu-
roscience, and somehow he was right.

I was blessed with spending my first years outside of the canonical training of neu-
roscience with Emma Coddington, who was more interested in the multiscale in-
terplay between neural, endocrine, and emotional systems than the reductive filter-
bank model of the brain. In neuroscience I found an endless abyss of systems cre-
ating themselves, loose boundaries between layers of organization and chaos. I still
find myself in the fringes, thinking about the brain in its nonlinear dynamics, im-
mune to averaging and estimation, an organ with its own ideas about its activity
without a clear “code” or purpose aside from its own persistence. It is all the noise
and interdependence and local organization that results in some messy superstruc-
ture that keeps me near it.

It has been impossible for me to ignore the systems that structure the practice of
science long enough for me to spend much time doing it, though. The same things
that draw me towards studying the brain make me look upward at the messy, an-
archic processes that emerge as science — and the higher-order structuring forces
that condition it. We are all little neurons, only aware of our immediate n-depth
neighbors against the backdrop of the structures that our local awareness creates.
The reality of swarms is the slippery interdependence that merges that local auton-
omy with the overriding circumstance that binds them together. The miracle of the
brain is the miracle of society, how the blend of autonomy and independence makes
something more spectacular than its parts. The challenge for understanding both
is valuing the messiness and unplannedness of their agents alongside their necessary
interdependence, without which they would lose meaning.

“Rough consensus and running code,” cribbed from internet protocol architects[3],
captures the tautology that what works is whatever works. Neither a grand planned
architecture nor a libertarian focus on the disconnected autonomy of its agents de-
scribes systems capable of emergent behavior. What works is a fluid and evolving
consensus based on the agents organizing together to meet their needs. This is the
thread that binds my work: ill-defined categories computed by neural assemblies,
loose design in decoupled systems in experimental tools, and the linked interoper-
ability of digital infrastructure. It’s not clear to me whether this is an anarchist’s
view of the brain, or a neuroscientist’s view of politics, and it’s not necessarily im-
portant to me to resolve that.

These first two pieces focus on the ability for auditory cortex to learn from contin-
uous sounds to create the ill-defined perceptual categories of phonemes, the initial
plan for my work that was quickly interrupted.
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1
Mice Can Learn Phonetic Categories
Originally published as doi:10.1121/1.5091776 [4]

We perceive speech as a series of relatively invariant phonemes despite extreme
variability in the acoustic signal. To be perceived as nearly-identical phonemes,
speech sounds that vary continuously over a range of acoustic parameters must
be perceptually discretized by the auditory system. Such many-to-one mappings
of undifferentiated sensory information to a finite number of discrete categories
are ubiquitous in perception. Although many mechanistic models of phonetic
perception have been proposed, they remain largely unconstrained by neurobio-
logical data. Current human neurophysiological methods lack the necessary spa-
tiotemporal resolution to provide it: speech is too fast and the neural circuitry
involved is too small. Here we demonstrate that mice are capable of learning gen-
eralizable phonetic categories, and can thus serve as a model for phonetic per-
ception. Mice learned to discriminate consonants, and generalized consonant
identity across novel vowel contexts and speakers, consistent with true category
learning. A mouse model, given the powerful genetic and electrophysiological
tools for probing neural circuits available for them, has the potential to power-
fully augment our mechanistic understanding of phonetic perception.

1.1 Introduction

1.1.1 Lack of acoustic invariance in phonemes

We perceive speech as a series of relatively invariant phonemes despite extreme vari-
ability in the acoustic signal. This lack of order within phonemic categories remains
one of the fundamental problems of speech perception [5]. Plosive stop consonants
(such as /b/ or /g/) are the paradigmatic example of phonemes with near-categorical
perception [6, 7, 8] without invariant acoustic structure [9, 10]. The problem is not
just that phonemes are acoustically variable, but rather that there is a fundamental
lack of invariance in the relation between phonemes and the acoustic signal [10].
Despite our inability to find a source of invariance in the speech signal, the auditory
system learns some acoustic-perceptual mapping such that a plosive stop like /b/ is
perceived as nearly identical across phonetic contexts. A key source of variability
is coarticulation, which causes the sound of a spoken consonant to be strongly af-
fected by neighboring segments, such as vowels. Coarticulation occurs during stop
production because the articulators (such as the tongue or lips) have not completely
left the positions from the preceding phoneme, and are already moving to antici-
pate the following phoneme [11, 12]. Along with many other sources of acoustic
variation like speaker identity, sex, accent, or environmental noise; coarticulation
guarantees that a given stop consonant does not have a uniquely invariant acoustic
structure across phonetic contexts. In other words, there is no canonical acoustic
/b/ [11, 6]. Phonetic perception therefore cannot be a simple, linear mapping of
some continuous feature space to a discrete phoneme space. Instead it requires a
mapping that flexibly uses evidence from multiple, imperfect cues depending on

https://doi.org/10.1121/1.5091776
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context [6, 13]. This invariant perception of phonemes, despite extreme variability
in the physical speech signal, is referred to as the non-invariance problem [14].

1.1.2 Generality of phonetic perception

The lack of a simple mapping between acoustic attributes and phoneme identity has
had a deep influence on phonetics, in part motivating the hypothesis that speech is
mechanistically unique to humans [15], and the development of non-acoustic the-
ories of speech perception (most notably motor theories [13, 11, 16]). However,
it has been clear for more than 30 years that at least some auditory components of
speech perception are not unique to humans, suggesting that human speech percep-
tion exploits evolutionarily-preserved functions of the auditory system [10, 17, 18,
19]. For example, nonhuman animals like quail [10, 20], chinchillas [21], rats [22],
macaques [23], and songbirds [24] are capable of learning phonetic categories that
share some perceptual qualities with humans [25, 26]. This is consistent with the
idea that categorizing phonemes is just one instance of a more general problem faced
by all auditory systems, which typically extract useable information from complex
acoustic environments by reducing them to a small number of ’auditory objects’
(for review, see [27]).

1.1.3 Neurolinguistic theories of phonetic perception

Many neurolinguistic theories of phonetic perception have been proposed [28, 29,
30, 16, 31], but neurophysiological evidence to support them is limited. One broad
class of models follows the paradigm of hierarchical processing first described by
Hubel and Weisel in the visual system [28, 32, 29]. In these models, successive
processing stages in the auditory system extract acoustic features with progressively
increasing complexity by combining the simpler representations present in preced-
ing stages. Such hierarchical processing is relatively well-supported by experimental
data. For example, the responses of neurons in primary auditory cortex (A1) to
speech sounds are more diverse than those in inferior colliculus [33] (but see [34]).
While phoneme identity can be classified post-hoc from population-level activity
in A1 [35, 36, 37], neurons in secondary auditory cortical regions explicitly encode
higher-order properties of speech sounds [38, 39, 40, 41, 42].

Another class of models proposes that phonemes have no positive acoustic “proto-
type”, and that we instead learn only the acoustic features useful for telling them
apart [30]. Theoretically, these discriminative models provide better generalization
and robustness to high variance [43]. Theories based on discrimination rather than
prototype-matching have a long history in linguistics [44], but have rarely been im-
plemented as neurolinguistic models. A possible neural implementation of discrim-
inative perception is that informative contrast cues could evoke inhibition to sup-
press competing phonetic percepts, similar to predictive coding [45, 30, 46]. Neu-
rophysiological evidence supports the existence of discriminative predictive coding,
but its specific implementation is unclear [47, 48].

These two very different classes of models illustrate a major barrier faced by phonetic
research: both classes can successfully predict human categorization performance,
making it difficult to empirically validate or refute either of them using psychophys-
ical experiments alone. Mechanistic differences have deep theoretical consequences
— for example, the characterizations made by the above two classes of models re-
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garding what phonemes are precisely oppose one another: are they positive acous-
tic prototypes, or sets of negative acoustic contrasts? Perceptually, do listeners iden-
tify phonemes, or discriminate between them? Neurobiological evidence regarding
how the brain actually solves these categorization problems could help overcome
this barrier.

1.1.4 The utility of a mouse model for speech research

Neurolinguistic research in humans faces several limitations that could be overcome
using animal models.

First, most current human neurophysiological methods lack the spatiotemporal res-
olution to probe the fine spatial scale of neuronal circuitry and the millisecond timescale
of speech sounds. A causal, mechanistic understanding of computation in neural
circuits is also greatly aided by the ability to manipulate individual neurons or cir-
cuit components, which is difficult in humans. Optogenetic methods available in
mice provide the ability to activate, inactivate, or record activity from specific types
of neurons at the millisecond timescales of speech sounds.

Second, it is difficult to isolate the purely auditory component of speech percep-
tion in humans. Humans can use contextual information from syntax, semantics
or task structure to infer phoneme identity [49, 50]. It is also difficult to rule out the
contribution of multimodal information [51], or of motor simulation predicted by
motor theories. Certainly, these and other non-auditory strategies are used during
normal human speech perception. Nevertheless, speech perception is possible with-
out these cues, so any neurocomputational theory of phonetic perception must be
able to explain the purely auditory case. Animal models allow straightforward iso-
lation of purely auditory phonetic categorization without interference from motor,
semantic, syntactic, or other non-auditory cues.

Third, it is difficult to control for prior language experience in humans. Experience-
dependent effects on phonetic perception are present from infancy [52]. It can
therefore be challenging to separate experience-driven effects from innate neuro-
computational constraints imposed by the auditory system. Completely language-
naive subjects (such as animals) allow the precise control of language exposure, per-
mitting phonetics and phonology to be disentangled in neurolinguistics.

Animal models of phonetic perception are a useful way to avoid these confounds,
and provide an important alternative to human studies for empirically grounding
the development of neurolinguistic theories. The mouse is particularly well-suited
to serve as such a model. A growing toolbox of powerful electrophysiological and
optogenetic methods in mice has allowed unprecedented precision in characterizing
neural circuits and the computations they perform.

1.1.5 The utility of phonetics for auditory neuroscience

Conversely, auditory neuroscience stands to benefit from the framework provided
by phonetics for studying how sound is transformed to meaning. Understanding
how complex sounds are encoded and processed by the auditory system, ultimately
leading to perception and behavior, remains a challenge for auditory neuroscience.
For example, it has been difficult to extrapolate from simple frequency/amplitude
receptive fields to understand the hierarchical organization of complex feature selec-
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tivity across brain areas. A great strength of neuroethological model systems such as
the songbird is that both the stimulus (e.g., the bird’s own song) and the behavior
(song perception and production) are well understood. This has led to significant
advances in understanding the hierarchical organization and function of the song
system [53, 54]. The long history of of speech research in humans has produced a
deep understanding of the relationships between acoustic features and phonetic per-
ception [55]. These insights have enabled specific predictions about what kinds of
neuronal selectivity for features (and combinations of features) might underlie pho-
netic perception [5]. Although recognizing human speech sounds is not a natural
ethological behavior for mice, phonetics nevertheless provides a valuable framework
for studying how the brain encodes and transforms complex sounds into perception
and behavior.

Here we trained mice to discriminate between pitch-shifted recordings of naturally
produced consonant-vowel (CV) pairs beginning with either /g/ or /b/. Mice demon-
strated the ability to generalize consonant identity across novel vowel contexts and
speakers, consistent with true category learning. To our knowledge this is the first
demonstration that any animal can generalize consonant identity across both novel
vowel contexts and novel speakers. These results indicate that mice can solve the
non-invariance problem, and suggest that mice are a suitable model for studying
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Figure 1.1: Stimuli and Task Design. a)
Spectrograms of stimuli. Left: Example of an
original recording of an isolated consonant-vowel
token (/gI/). Center: the same token pitch-shifted
upwards by 10x (3.3 octaves) into the mouse
hearing range. Right: Recording of the
pitch-shifted token presented in the behavior box.
Stimuli retained their overall acoustic structure
below 34kHz (the upper limit of the speaker
frequency response). b) Power spectra (dB, Welch’s
method) of tokens in a. Black: Original (left
frequency axis), red: Pitch-shifted (right frequency
axis), blue: Box Recording (right frequency axis). c)
Mice initiated a trial by licking in a center port and
responded by licking on one of two side ports.
Correct responses were rewarded with water and
incorrect responses were punished with a
mildly-aversive white noise burst. d) The difficulty
of the task was gradually expanded by adding more
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in a generalization task. e) Mice (colored lines)
varied widely in the duration of training required to
reach the generalization phase. Mice were returned
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performance after reaching a new stage.
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phonetic perception.

1.2 Results

1.2.1 Generalization performance

We began training 23 mice to discriminate between consonant-vowel (CV) pairs be-
ginning with either /b/ or /g/ in a two-alternative forced choice task. CV tokens
were pitched-shifted up into the mouse hearing range (Fig. 1.1a-b). Each mouse be-
gan training with a pair of tokens (individual recordings) in a single vowel context
(ie. /bI/ and /gI/) from a single speaker, and then advanced through stages that pro-
gressively introduced new tokens, vowels, and speakers (Fig. 1.1c-d, see Methods).
Training was discontinued in 13 (56.5%) of these mice because their performance
on the first stage was not significantly better than chance after two months. The re-
maining 10 (43.5%) mice progressed through all the training stages to reach a final
generalization task, on average in 14.9 (σ±7.8) weeks (Fig. 1.1e). This success rate
and training duration suggest that the task is difficult but achievable.

We note that this training time is similar to that reported previously for rats (14 ±
0.3weeks [22]). Previous studies have not generally reported success rates. Human
infants also vary in the rate and accuracy of their acquisition of phonetic categories
[? ], so we did not expect perfect accuracy from every mouse. The cause of such
differences in ability is itself an opportunity for future study.

Generalization is an essential feature of categorical perception. By testing whether
mice can generalize their phonetic categorization to novel stimuli, we can distin-
guish whether mice actually learn phonetic categories or instead just memorize the
reward contingency for each training token. Four types of novelty are possible with
our stimuli: new tokens from the speakers and vowel contexts used in the training
set, new vowels, new speakers, and new vowels from new speakers (colored groups
in Fig. 1.2a). In the final generalization stage, we randomly interleaved tokens from
each of these novelty classes on 20% of trials, with the remaining 80% consisting of
tokens from the training set. We interleaved novel tokens with training tokens for
two reasons: (1) to avoid a sudden increase in task difficulty, which can degrade per-
formance, and (2) to minimize the possibility that mice could learn each new token
by widely separating them in time (on average, generalization tokens were repeated
only once every five days).

We looked for 4 hallmarks of generalization: (1) Mice should be able to accurately
categorize novel tokens, (2) performance should reflect the quality of the acoustic-
phonetic criteria learned in training, (3) performance on novel tokens should be cor-
respondingly worse for tokens that differ more from those in the training set, and
(4) accurate categorization of novel tokens should not require additional reinforce-
ment.

All 10 mice were able to categorize tokens of all generalization types with an accuracy
significantly greater than chance. We estimated the impact of each generalization
class on performance as a fixed factor nested within each mouse as a random factor
in a mixed-effects logistic regression (see Methods). The predicted accuracy for each
generalization class is shown in Table 1.1, each providing an estimate of the difficulty
of that class after accounting for the random effects of individual mice.
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for each novelty class (gray lines indicate individual
mice). d) Mean accuracy for individual mice
(colored bars indicate each novelty class). Error bars
in d are 95% binomial confidence intervals. Mice
were assigned one of two sets of training tokens,
black and white boxes in d.

Performance on all generalization types was strongly and positively correlated with
performance on the training set (Fig. 1.2b, adj. R2 = 0.74, F (4, 5) = 7.4, p <

0.05). If mice were “overfitting,” that is, memorizing the training tokens rather
than learning categories, then we would expect the opposite (i.e., above some thresh-
old, mice that performed better on the training set would perform correspondingly
worse on the generalization set). It appears instead that better prototypes or deci-
sion boundaries learned in the training stages allowed better generalization to novel
tokens.
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Mice were better at some types of generalization than others (Fig. 1.2c). The esti-
mates of their relative difficulty (Fig. 1.2c) provide a ranking of the perceptual nov-
elty of the stimulus classes based on their similarity to the training tokens. From eas-
iest to hardest, these were: novel token, novel vowel, novel speaker (which was not
significantly more difficult than novel vowel), novel speaker & vowel. The effects
of generalizing to novel vowels and novel speakers were not significantly different
from each other, but pairwise comparisons between each of the other types of gen-
eralization were (Tukey’s method, all p < 0.001, also see confidence intervals in
Table 1.1).

Although the effect of each generalization type on performance was significantly
different between mice (Likelihood Ratio Test, χ2(14) = 407.22, p ≪ 0.001),
they were highly correlated (see Table 1.1). The relative consistency of novelty type
difficulty across mice (ie. the correlation of fixed effects, Fig. 1.2c) is striking, but our
results cannot distinguish whether it is due to the mice or the stimuli: it is unclear
whether the acoustic/phonetic criteria learned by all mice are similarly general, or
whether the “cost” of each type of generalization is similar across an array of possible
acoustic/phonetic criteria.

True generalization requires that one set of discrimination criteria can be success-
fully applied to novel cases without reinforcement. It is possible that the mice were
instead able to rapidly learn the reward contingency of novel tokens during the gen-
eralization stage. If mice were learning rapidly rather than generalizing, this would
predict that novel token performance (1) would be indistinguishable from chance
on the first presentation, and (2) would increase relative to performance on already-
learned tokens with repeated presentations.

Performance on the first presentation of novel tokens was significantly greater than
chance (Fig. 1.3, all mice, all tokens from all novelty classes: one-sided binomial test,
n = 1410, Pcorrect = 0.61, lower 95% CI = 0.588, p ≪ 0.001; all mice, worst
novelty class: n = 458, Pcorrect = 0.581, lower 95% CI = 0.541, p < 0.001).
This demonstrates that mice were able to generalize immediately without additional
reinforcement. Although performance on novel tokens did increase with repetition,
so did performance on training tokens (Fig. 1.3). We noted that performance on all
tokens (both novel and previously learned tokens) transiently dropped after each
transition between task stages, suggesting a non-specific effect of an increase in task
difficulty. To distinguish an increase in performance due to learning from an in-
crease due to acclimating to a change in the task, we compared performance on gen-
eralization and training tokens over the first 40 presentations of each token. If the
mice were learning the generalization tokens, the increase in performance with re-
peated presentations should be significantly greater than that of the already trained
tokens.

Performance was well fit by a logistic regression of correct/incorrect responses from
each mouse against the novelty of a token (trained vs. novel tokens), and the number
of times it had been presented (Fig. 1.3). The effect of the number of presentations
on accuracy was not significantly different for novel tokens compared to trained
tokens (interaction between novelty and the number of presentations: Wald test,
z = 1.239, 95%CI = [−0.022, 0.1], p = 0.215). This was also true when the
model was fit with with the generalization types themselves rather than trained vs.
novel tokens (most significant interaction, generalization to novel speakers x num-
ber of presentations: Wald test, z = 1.425, 95%CI = [−0.018, 0.117], p =

0.154) and with different numbers of repetitions (10: z = −0.219, 95%CI =
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[−0.161, 0.13], p = 0.827; 20: z = −0.521, 95%CI = [−0.116, 0.068], p =

0.602). This indicates that the asymptotic increase in performance on novel tokens
was a general effect of adapting to a change in the task rather than a learning period
for the novel stimuli.

In summary, the behavior of the mice is consistent with an ability to generalize some
learned acoustic criteria to novel stimuli. It is unlikely that the mice rapidly learned
the novel tokens because (1) performance on the first presentation of novel tokens
was significantly above chance, (2) performance on subsequent presentations of
novel tokens did not improve compared to trained tokens, and (3) learning each
token would have to take place over unrealistically long timescales: there were an av-
erage of 2355 trials (5 days) between the first and second presentation of each novel
token.

60

70

80

−10 0 10 20 30 40
# of Presentations

M
ea

n 
%

 C
or

re
ct

Learned Tokens
Novel Tokens

last training
presentations

Figure 1.3: Learning curve for novel tokens.
Performance for both novel and training set tokens
dropped transiently and recovered similarly after
the transition to the generalization stage.
Presentation 0 corresponds to the transition to the
generalization stage. The final ten trials before the
transition are shown in the gray dashed box. Mean
accuracy and 95% binomial confidence intervals are
collapsed across mice for novel (red, all novelty
classes combined) or learned (black) tokens, by
number of presentations in the generalization task.
Logistic regression of binomial correct/incorrect
responses fit to log-transformed presentation
number (lines, shading is smoothed standard error).

1.2.2 Training Set Differences

One strength of studying phonetic perception in animal models is the ability to pre-
cisely control exposure to speech sounds. To test whether and how the training
history impacted the pattern of generalization, we divided mice into two cohorts
trained with different sets of speech tokens. In the first cohort (n = 6 mice),
mice were trained with tokens from speakers 1 and 2 (speaker number in Fig. 1.4a),
whereas the second cohort (n = 4 mice) were trained on speakers 4 and 5.

The two training cohorts had significantly different patterns of which tokens were
accurately categorized (Fig. 1.4a, Likelihood-Ratio test, regression of mean accuracy
on tokens with and without token x cohort interaction: χ2

161, p ≪ 0.001). Put an-
other way, accuracy patterns were markedly similar within training cohorts: cohort
differences accounted for fully 40.6% of all accuracy variance (sum of squared-error)
between tokens.
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Figure 1.4: Patterns of individual and group
variation. a)Mean accuracy (color, scale at top) for
each mouse (columns) on tokens grouped by
consonant, speaker, and vowel (rows). The
different training sets (cells outlined with black
boxes) led to different patterns of accuracy on the
generalization set. b) Ward clustering dendrogram,
colored by cluster. c) Training set cohorts differed
in bias but not mean accuracy.

Mice from the second training cohort were far more likely to report novel tokens
as a /g/ than the first cohort (Fig. 1.4b), an effect that was not significantly related
to their overall accuracy (b = 0.351, t(8) = 2.169, p = 0.062). Since the only
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difference between these mice were the tokens they were exposed to during training
(they were trained contemporaneously in the same boxes), we interpret this response
bias as the influence of the training tokens on whatever acoustic cues the mice had
learned in order to perform the generalization task. This suggests that the acoustic
properties of training set 2 caused the /g/ “prototype” to be overbroad.

We searched for additional sub-cohort structure with hierarchical clustering (Ward’s
Method, dendrogram in fig 1.4b). Within each training cohort there appeared to
be two additional clusters of accuracy patterns. Though our sample size was too
small to meaningfully interpret these clusters, they raise the possibility that even
when trained using the same set of sounds mice might learn multiple sets of rules to
distinguish between consonant classes.

1.2.3 Acoustic-behavioral correlates

10

15

20

25

30

35

10 15 20 25
F2 Sustained (kHz)

F2
 O

ns
et

 (k
H

z)

100% /g/

75% /g/

50%

75% /b/

100% /b/

−6 −3 0 3
/g/−/b/ Locus Distance (kHz)

M
ea

n 
R

es
po

ns
e

/g/
/b/

a

b

/g/-like /b/-like

Figure 1.5: Acoustic-Behavior Correlates F2
Onset-Vowel transitions do not explain observed
response patterns. a) Locus equations relating F2
at burst onset and vowel steady state (sustained) for
each token (points), split by consonant (colors,
same as b)). b) As the difference of a token’s
distance from the ideal /g/ and /b/ locus equation
lines increased (x axis, greater distance from /g/,
smaller distance from /b/), /b/ tokens obeyed the
predicted categorization while /g/ tokens did not
(slopes of colored lines).

Humans can flexibly use several acoustic features such as burst spectra and formant
transitions to discriminate plosive consonants, and we wondered to what extent
mice were sensitive to these same features.

One dominant acoustic cue for place of articulation in stop consonants is the tran-
sition of the second formant following the plosive burst [56, 5, 57]. Formant tran-
sitions are complex and dependent on vowel context, but tokens for a given place
of articulation cluster around a line – or “locus equation” – relating F2 frequency
at release to its mid-vowel steady-state [5, 57] (Fig. 1.5a). If mice were sensitive to
this cue, the distance from both locus equation lines should influence response. For
example, a /g/ token between the locus equation lines should have a greater rate of
misclassification than a token at an equal distance above the red /g/ line. Therefore
we tested how classification depended on the difference of distances from each line
(/g/ distance - /b/ distance, which we refer to as “locus difference”).

Mean responses to tokens (ranging from 100% /g/ - 100% /b/) were correlated with
locus differences (black line, Fig. 1.5b). However, it is important to note that this
correlation does not necessarily demonstrate that mice relied on this acoustic cue.
Because multiple acoustic features are correlated with consonant identity, perfor-
mance that is correlated with one such cue would also be correlated with all the oth-
ers. The mice learned some acoustic property of the consonant classes, and since
the acoustic features are all highly correlated with one another, they are all likely to
correlate with mean responses.

To distinguish whether mice specifically relied on F2 locus distance, we therefore
measured the marginal effect of this acoustic cue within a consonant class. This
is shown by the slopes of the red and blue lines in Fig. 1.5b. For example, is a
/g/ token that is further away from the blue /b/ line more likely to be identified
as a /g/ than one very near the /b/ line? Mean responses to /g/ tokens were neg-
atively correlated with locus distance (Mean response /g/ to /b/ between 0 and 1,
b = −0.028kHz, 95%CI = [−0.035,−0.022], p ≪ 0.001). In other words, to-
kens that should have been more frequently confused with /b/ were actually more
likely to be classified as /g/. Note the red points at locus distance of zero in Fig.
1.5b: these tokens have an equal distance from both the /b/ and /g/ locus equa-
tion prototypes but are some of the most accurately categorized /g/ tokens. /b/
tokens obeyed the predicted direction of locus distance (b = 0.049, 95%CI =

[0.039, 0.06], p ≪ 0.001), but the effect was very small: moving one standard de-



mice can learn phonetic categories 23

viation (σ/b/ = 1.618kHz) towards the /g/ line only changed responses by 7.9%.
These results suggest that mice did not rely on F2 transitions to categorize these con-
sonants.

We repeated this analysis separately for each training cohort to test whether the two
cohorts could have developed different acoustic templates that better explained their
response patterns. We derived cohort-specific locus-equation lines and distances us-
ing only the tokens from each of their respective training sets. These models were
qualitatively similar to the model that included all tokens and mice and did not im-
prove the model fit (Cohort 1: /g/: b = −0.051, 95%CI = [−0.064,−0.038],
/b/: b = 0.041, 95%CI = [0.022, 0.059]; Cohort 2: /g/: b = −0.022, 95%CI =

[−0.031,−0.014], /b/: b = 0.055, 95%CI = [0.042, 0.069]).

We conclude that while our stimulus set had the expected F2 formant transition
structure, this was unable to explain the behavioral responses we observed both glob-
ally and within training cohorts. There are, of course, many more possible acoustic
parameterizations to test, but the failure of F2 transitions to explain our behavioral
data is notable because of its perceptual dominance in humans and its common use
in parametrically synthesized speech sounds. This demonstrates one advantage of
using natural speech sounds: mice trained on synthesized speech that varied para-
metrically only on F2 transitions would likely show sensitivity to this cue, but this
does not mean that mice show the same feature sensitivity when trained with nat-
ural speech. Preserving the complexity of natural speech stimuli is important for
developing a general understanding of auditory category learning.

1.3 Discussion

These results demonstrate that mice are capable of learning and generalizing pho-
netic categories. Indeed, this is the first time to our knowledge that mice have been
trained to discriminate between any classes of natural, non-species-specific sounds.
Thus mice join a number of model organisms that have demonstrated categorical
learning with speech sounds [10, 25, 26, 21, 22, 23, 24], making a new suite of ge-
netic and electrophysiological tools available for phonetic research.

Two subgroups of our mice that were trained using different sets of speech tokens
demonstrated distinct patterns of consonant identification, presumably reflecting
differences in underlying acoustic prototypes. The ability to precisely control expo-
sure to speech sounds provides an opportunity to probe the neurocomputational
constraints that govern the possible solutions to consonant identification.

Here we opted to use naturally recorded speech tokens in order to demonstrate that
mice could perform a “hard version” of phonetic categorization that preserves the
full complexity of the speech sounds and avoids a priori assumptions about the pa-
rameterization of phonetic contrasts. Although our speech stimuli had the expected
F2 formant transition structure, that did not explain the response patterns of our
mice. This suggests that the acoustic rules that mice learned are different from those
that would be learned from synthesized speech varying only along specifically cho-
sen parameters.

Future experiments using parametrically synthesized speech sounds are a critical
next step, and will support a qualitatively different set of inferences. Being able
to carefully manipulate reduced speech sounds is useful to probe the acoustic cue
structure of learned phonetic categories, but the reduction in complexity that makes
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them useful also makes it correspondingly more difficult to probe the learning and
recognition mechanisms for a perceptual category that is defined by multiple im-
perfect, redundant cues. It is possible that the complexity of natural speech may
have caused our attrition rate to be higher, and task performance lower, than other
sensory-driven tasks. Neither of those concerns, however, detracts from the possibil-
ity for the mouse to shed mechanistic insight on phonetic perception. Indeed, error
trials may provide useful neurophysiological data about how and why the auditory
system fails to learn or perceive phonetic categories.

We hope in future experiments to directly test predictions made by neurolinguis-
tic models regarding phonetic acquisition and discrimination. For example, one
notable model proposes that consonant perception relies on combination-sensitive
neurons that selectively respond to specific combinations of acoustic features [5].
This model predicts that mice trained to discriminate stop consonants would have
neurons selective for the feature combinations that drive phoneme discrimination,
perhaps in primary or higher auditory cortical areas. Combination-selective neu-
rons have been observed in A1 [58, 59], and speech training can alter the response
properties of A1 neurons in rats [22], but it is unclear whether speech training in-
duces combination-selectivity that would facilitate phonetic discrimination.

The ability to record from hundreds of neurons in awake behaving animals using
tetrode electrophysiology or 2-photon calcium imaging presents exciting opportu-
nities to test predictions like these. Should some candidate population of cells be
found with phonetic selectivity, the ability to optogenetically activate or inactivate
specific classes of neurons (such as excitatory or inhibitory cell types, or specific pro-
jections from one region to another) could shed light on the circuit computations
and transformations that confer that selectivity.

1.4 Methods

1.4.1 Animals

All procedures were performed in accordance with National Institutes of Health
guidelines, as approved by the University of Oregon Institutional Animal Care and
Use Comittee.

We began training 23 C57BL/6J mice to discriminate and generalize stop conso-
nants in CV (consonant-vowel) pairs. 13 mice failed to learn the task (see Training,
below). 10 mice (43.5%) progressed through all training stages and reached the
generalization task in an average 14.9 (σ = 7.8) weeks. Mean age at training onset
was 8.1 (σ = 2) weeks, and at discontinuation of training was 50.6 (σ = 11.2)

weeks. Sex did not significantly affect the probability of passing or failing train-
ing (Fisher’s Exact Test: p = 0.102), nor did the particular behavioral chamber
used for training (p = 0.685), nor age at the start of training (Logistic regres-
sion: z = 1.071, p = 0.284). Although this task was difficult, our training time
(14± 0.3 weeks as in [22]), and accuracy (generalization: 76%[10], training tokens
only: 84.1% [22]) are similar to comparable experiments in other animals.
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1.4.2 Speech stimuli

Speech stimuli were recorded in a sound-attenuating booth with a head-mounted
microphone attached to a Tascam DR-100mkII handheld recorder sampling at 96kHz/24bit.
Each speaker produced a set of 3 recordings (tokens) of each of 12 CV pairs begin-
ning with either /b/ or /g/, and ending with /I/, /o/, /a/, /æ/, /ε/, /u/. To reduce a
slight hiss that was present in the recordings, they were denoised using a Daubechies
wavelet with two vanishing moments in MATLAB. The typical human hearing
range is 20 Hz - 20 kHz, whereas the mouse hearing range is 1 kHz - 80 kHz [60].
The F0 of our recorded speech sounds ranged from 100 - 200 Hz, which is well be-
low the lower frequency limit of the mouse hearing range. We therefore pitch shifted
all stimuli upwards by 10x (3.3 octaves) in MATLAB [? ]. This shifted all spectral
information equally upwards into an analogous part of mouse hearing range while
preserving temporal information unaltered.

Tokens from five speakers (one male - speaker 1 throughout, four female - speak-
ers 2-5 throughout) were used. Three vowel contexts (/æ/, /ε/, and /u/) were not
recorded from one speaker. It is unlikely that this had any effect on our results, as
our primary claims are based on the ability to generalize at all, rather than gener-
alization to tokens from a particular speaker. Tokens were normalized to a com-
mon mean amplitude, but were otherwise unaltered to preserve natural variation
between speakers — indeed, preserving such variation was the reason for using nat-
urally recorded rather than synthesized speech.

Formant frequency values were measured manually using Praat [61]. F2 at onset
was measured at its center as soon as it was discernible, typically within 20 ms of
burst onset, and at vowel steady-state, typically 150-200ms after burst onset.

1.4.3 Training

We trained mice to discriminate between CV pairs beginning with /b/ or /g/ in a
two-alternative forced choice task. Training sessions lasted approximately 1 hour,
5 days a week. Each custom-built sound-attenuating training chamber contained
two free-field JBL Duet speakers for stimulus presentation with a high-frequency
rolloff of 34 kHz, and a smaller 15 x 30 cm plastic box with three “lick ports.” Each
lick port consisted of a water delivery tube and an IR beam-break sensor mounted
above the tube. Beam breaks triggered water delivery by actuating a solenoid valve.
Water-restricted mice were trained to initiate each trial with an unrewarded lick at
the center port, which started playback of a randomly selected stimulus, and then
to indicate their stimulus classification by licking at one of the ports on either side.
Tokens beginning with /g/ were always on the left, with /b/ on the right. Two co-
horts were trained on two separate sets of tokens. Training set 1 started with speaker
1 (Fig. 4a) and had speaker 2 introduced on the fourth stage, where Training set 2
started training with speaker 5 and had speaker 4 introduced on the fourth stage.
Correct classifications received ∼10 µL water rewards, and incorrect classifications
received a 5s time-out that included a mildly aversive 60 dB SPL white noise burst.

Training advanced in stages that progressively increased the number of tokens, vowel
contexts, and speakers. Mice first learned a simple pure-tone frequency discrimina-
tion task to familiarize them with the task and shape their behavior; the tones were
gradually replaced with the two CV tokens of the first training stage. CV discrimi-
nation training proceeded in 5 stages outlined in Table 2. Mice automatically gradu-
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ated from each stage when 75% of the preceding 300 trials were answered correctly.
In a few cases, a mouse was returned to the previous stage if its performance fell to
chance for more than a week after graduating. Training was discontinued after two
to three months if performance in the first stage never rose above chance. Mice that
reached the final training stage were allowed to reach asymptotic performance, and
then advanced to a generalization task.

In the generalization task, stimuli from the set of all possible speakers, vowel con-
texts, and tokens (140 total, not including the stage 5 stimulus set) were randomly
presented on 20% of trials and the stage 5 stimulus set was used on the remaining
80%. Training tokens were drawn from a uniform random distribution so that each
was equally likely to occur during both the stage 5 training and generalization phases.
Novel tokens were drawn uniformly at random by their generalization class, but
since there were unequal numbers of tokens in each class (Novel token only: 16 to-
kens, Novel Vowel: 36, Novel Speaker: 54, Novel Speaker + Vowel: 54), tokens in
each class had an unequal number of presentations. We note that the logistic regres-
sion analysis with restricted maximum likelihood that we used is robust to unequal
sample sizes [62].

1.4.4 Data analysis

Data were excluded from days on which a mouse had a > 10% drop in accuracy
from their mean performance on the previous day (44/636 = 7% of sessions).
Anecdotally, mice are sensitive to environmental conditions (e.g., thunderstorms),
so even though all efforts were made to minimize variation between days, even the
best performing mice had “bad days” where they temporarily fell to near-chance
performance and exhibited strong response bias. We thus assume these “bad days”
were the result of temporary environmental or other performance issues, and were
unrelated to the difficulty of the task itself.

All analyses were performed in R (R version 3.5.3 (2019-03-11))[63] using RStu-
dio (1.1.456)[64]. Generalization performance was modeled using a logistic gener-
alized linear mixed model (GLMM) using the R package “lme4”[65]. Binary cor-
rect/incorrect responses were fit hierarchically to models of increasing complexity
(see Table 1.3), with a final model consisting of the generalization class (as in Fig.
2a: training tokens, novel tokens from the speakers and vowels in the training set,
novel speaker, novel vowel, and novel speaker and vowel) as a fixed effect with ran-
dom slopes and intercepts nested within each mouse as a random effect. There was
no evidence of overdispersion (i.e., deviance ≈ degrees of freedom, or less than ∼ 2
times degrees of freedom), and the profile of the model showed that the deviances
by each fixed effect were approximately normal. Accordingly, we report Wald con-
fidence intervals. We also computed bootstrapped confidence intervals, which had
only minor disagreement with the Wald confidence intervals and agreed with our
interpretation in the text.

Clustering was performed with the “cluster”[66] package. Ward clustering split the
mice into two notable clusters, which are plotted in Fig. 1.4.

We estimated locus equations relating F2 onset and F2 vowel using total least squares
linear regression. The locus equations of the /b/ and /g/ tokens accounted for 97.3%
and 95.9% of the variance in the F2 measurements of our tokens, respectively.

Spectrograms in Figure 1.1a were computed with the “spectrogram” function in
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MATLAB 2017b, and power spectra in Figure 1.1b were computed with the “pwelch”
function in MATLAB 2018b with the same window and overlap as 1.1a spectro-
grams.

The remaining analyses are described in the text and used the “binom”[67], “reshape”[68],
and “plyr”[69] packages. Data visualization and tabulation was performed with the
“ggplot2,”[70] and “xtable”[71] packages.

1.5 Tables

Accuracy 95% Wald CI Corr
Learned 0.767* [0.748, 0.785]

Token 0.739* [0.713, 0.763] 0.5
Vowel 0.678* [0.655, 0.701] 0.81 0.91

Speaker 0.666* [0.651, 0.68] 0.98 0.68 0.92
Vow+Spk 0.637* [0.624, 0.651] 0.98 0.64 0.9 1

Table 1.1: Impact of each generalization class
on performance. Accuracy values provide an
estimate of the difficulty of that class after
accounting for the random effects of individual
mice. Accuracies are logistic GLMM coefficients
transformed from logits, and model coefficients are
logit differences from training set accuracy, which
was used as an intercept. Correlation values are
between fixed effects (novelty classes) across
random effects (mice). * indicates significance
(p(> |z|) ≪ .001).

Stage Speakers Vowels Total Tokens

1 1 1 2
2 1 1 4
3 1 2 6
4 2 2 12
5 2 3 20

Generalization 5 6 160 (20 training, 140 novel)

Table 1.2: Token structure of training stages

DF χ2 DFχ2 Pr(> χ2)
Mouse 2

Mouse + Type 6 2534.46 4 ≪ 0.001
Type | Mouse 20 407.22 14 ≪ 0.001

Table 1.3: hierarchical GLMM: To reach the
appropriate complexity of model, we first modeled
correct/incorrect answers as a function of each
mouse as a fixed effect (row 1), then added the
generalization type (as in Fig. 1.2) as a fixed effect
(row 2), and finally modeled generalization type as
a fixed effect nested within each mouse as a random
effect (row 3). Since the final model had the best fit,
it was used in all reported analyses related to the
GLMM.





Language Games
I had intended to finish my dissertation with an experiment that was the next log-
ical conclusion of the mouse model of phonetics, doing longitudinal mesoscopic
calcium imaging of auditory cortex as the phonemes were being learned in order to
model the changes in network activity. “Interdisciplinary” neuroscience tends to
look more like neuroscientists swinging into other disciplines without taking the
time to appreciate their complexity, and so this was an attempt at a synthesis of
decades of work across several disciplines in order to inform our work. The picture
the model attempts to paint is one of a loose basis set of low-level acoustic represen-
tations that fluidly restructure themselves according to their recent informational
history to achieve a sort of rough categorical consensus around the ill-defined cate-
gory of a phoneme — an attempt to move us beyond synthesized speech and trial
averaging to naturalistic sounds computed by the dynamic activity negotiated by
the brain.

It comes out of chronological order in the spring of 2021, after my work with Au-
topilot and a covid-induced awakening of the possibility of public engineering with
the People’s Ventilator Project[72]. I was restless and not ready to return to basic
research while the world was still so broken, and so it was abandoned in favor of the
last piece on digital infrastructure. Accordingly, it ends relatively abruptly, without
satisfying conclusion. I include it here in its unfinished form, roughly edited, warts
and all, as something I intend to pick up perhaps one day when basic science is more
possible.

https://www.peoplesvent.org
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Phonemes are a Game the Brain Plays

“Consider for example the proceedings that we call ”games“. [...] For if you look
at them you will not see something that is common to all, but similarities, rela-
tionships, and a whole series of them at that. [...] Are they all ’amusing’? Com-
pare chess with noughts and crosses. Or is there always winning and losing, or
competition between players? Think of patience. [...] Look at the parts played
by skill and luck; and at the difference between skill in chess and skill in tennis.

And the result of this examination is: we see a complicated network of similarities
overlapping and criss-crossing: sometimes overall similarities, sometimes similar-
ities of detail. [...] And we extend our concept as in spinning a thread we twist
fibre on fibre. And the strength of the thread does not reside in the fact that some
one fibre runs through its whole length, but in the overlapping of many fibres.”

-Wittgenstein, Philosophical Investigations: 66-67[73]

Cognitive reality is characterized by its discreteness: rather than a continuous un-
differentiated gradient wash of sensation and cognition, we experience objects, con-
cepts, and categories. Speech is a continuous, high-dimensional, high-variability
acoustic signal, yet it is perceived as a small number of relatively-discrete phonemes[74].
The acoustic structure of phonemes is a sort of “Family Resemblance”[73] — the
truly extravagant variability of speech has thus far defied any simple, definite acous-
tic parameterization of its phonemes. Instead, individual utterances within a pho-
netic category vary along high numbers of feature-dimensions, none of which are
necessary nor sufficient for a listener to identify it[75, 76].

There are different types of category structure, and what typifies family resemblance
structures is 1) they are multiply defined - category membership is assesed across
many imperfect ‘features’ none of which is necessary nor sufficient, 2) prototypi-
cality - some instances are better ‘examples’ of a category than others, category mem-
bership is not binary, 3) context dependence - which feature is important depends
on the features present in the instance and the context in which it is being compared.
[77]

2.1 A Very SimpleModel...

Category representation theories are intimately related (and occasionally literally iso-
metric to [78]) to theories of the measurement of similarity, which is dominated by
geometric models[79]. These models nearly universally presuppose that categories
exist in a feature space such that there exist some number of features that describe
each instance of an object to be categorized.

To begin perhaps purposely naively, we will formulate a very simple geometric model
of perceptual categories:

Suppose that some sensory stimulus s was composed of some set of physical at-
tributes ai in the d-dimensional “stimulus space” S capable of fully representing
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all stimuli for a given sensory modality (as opposed to a particular set of eg. param-
eterized stimuli)

s = {a0, ai, . . . ad : a ∈ S} (2.1)

For example, a digital sound is fully defined by the amplitudes of the waveform at
each of its samples, or an image is defined as the wavelength and intensity of light at
each pixel. Since ai are arbitrary, S can represent a set of static attributes, or a set of
attributes through time.

The sensory stimulus s is processed into some percept p composed of perceptual
attributes bi in the e-dimensional “perceptual space” P

p = {b0, bi, . . . be : b ∈ P} (2.2)

such that some perceptual computation M maps S to P.

M = f : S → P (2.3)

p = M(s) (2.4)

Like S, the form of P is arbitrary, so while the discussion that follows treats it like a
continuously-valued metric space, it could also consist of a collection of binary/dis-
crete properties (like traditional phonetic descriptions like [± voiced]), as in, for
example [79, 80]

The objective of the observer is to infer the category cs given s’s representation as p.

cs = max({p(ci|p) : ci ∈ C}) (2.5)

The form of the sensory-perceptual mapping M , the perceptual space P it con-
structs, and the inference of category identity cs it supports serve as a loom for a
few threads of the speech perception problem scattered across a few disciplines and
vocabularies.

2.2 ...and its history

A prominent strain of phonetics research in the US, largely associated with the Hask-
ins Labs ([81] and see [82, p. 51]), has characterized the speech perception problem
as resolving a set of acoustic “cues” into phonetic identity:

“Liberman, Cooper, and Pierre Delattre began to study the acoustic speech sig-
nal, to determine how it represents the consonants and vowels of spoken words,
and to discover the acoustic structure (the ‘cues’) essential for their identification
by listeners. […] By selectively including and eliminating elements of acoustic
structure,l Liberman and his colleagues could determine what bits of structure
provided information for the different phonetic properties of spoken words.”

-Carol Fowler & Katherine S. Harris in [82, p. 51]
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The “cue discovery” paradigm of phonetics research posits that, for the auditory
component of phonetic perception, the elements in P are linear combinations of
the features in S whose manipulation can influence the identity of the perceived
phoneme. These features represent familiar phonetic parameterizations like voice
onset times or formant frequency ratios. The mappingM that constructsp is taken
to be a fixed, innate feature of the auditory system: “this version of the auditory
theory takes the perceived boundary between one phonetic category and another
to correspond to a naturally-occurring discontinuity in perception of the relevant
acoustic continuum.” [83].

The conclusion of cue-based research is summarized neatly by Philip Rubin, Robert
Remez, and Jennifer Pardo with respect to their sinewave synthesis experiments:
“Question: Which acoustic elements are essential for the perception of speech? An-
swer: None[84].” The failure to find a simple parameterization of phonetic cate-
gories as acoustic cues motivated an abandonment of an acoustic account of pho-
netic perception entirely in favor of a motor theory of perception that posited a
special, evolved “speech module” that linked the wily acoustics of speech sounds to
the action of the articulatory system:

“For if phonetic categories were acoustic patterns, and if, accordingly, phonetic
perception were properly auditory, one should be able to describe quite straight-
forwardly the acoustic basis for the phonetic category and its associated percept.
According to the motor theory, by contrast, one would expect the acoustic sig-
nal to serve only as a source of information about the gestures; hence the gestures
would properly define the category” [83]

Purely motor theories of speech have been diversely problematized, not least of all
by the many demonstrations that animals that conspicuously lack a human articu-
latory system are capable of phonetic categorization[17, 25, 26]. The acoustic prob-
lem of speech perception was simply too difficult to be solved by an evolutionarily
plausible auditory system – how could the family resemblance structure of phonetic
categories be learned without some explicit, innate knowledge of the acoustic con-
sequences of articulation?[76]

Research on infant acquisition of speech sounds has since demonstrated the pro-
found plasticity of the auditory system and its ability to learn the complex statisti-
cal dependencies between the acoustic attributes of speech[85]. A family of mod-
els based primarily on the work of Patricia Kuhl and colleagues describe the stimu-
lus space S as acoustic features based on the “basic cuts” of sensitivity in the audi-
tory system[86]. Infants exploit the statistical regularity and patterns of feature co-
uccurance to learn some mapping M that constructs a “warped” perceptual space
P that clusters features in S into acoustic “prototypes.”[85]

Phonetic category identity then consists of some density in P, the center of which
is the “ideal” phonetic exemplar most likely to be identified with a particular cate-
goery, and proceeding from this center point one transitions from off-target imper-
fect examplars to overlapping densities of other phonetic categories. Extensions to
the model make this formulation explicit, like Kronrod, Coppess, and Feldman’s[7]
bayesian model that offers a unified explanation of the strong categorical perception
of stop consonants and the weaker categorical perception of vowels. Their model
describes phonetic identification as an inference problem that depends on both the
acoustic properties of a stimulus and prior knowledge of phonetic categories, de-
fined as some mean and variance in an arbitrary perceptual space.
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In this model, the difficulty of the acoustic problem of speech perception carefully
described by cue-centric phonetic research is resolved by suggesting the auditory sys-
tem relies on sharp internal representations of category identity for phonemes that
have a large degree of uninformative variance, like stop consonants.

The degree of arbitrariness is problematic for the model, however. The proposition
that there is some stimulus space P that supports linearly-separable phonetic cate-
gories is emphatically counterevidenced by the 70 years of cue-based research that
has attempted to find one[87, 75]. These prototype models, without weighting for
the informativeness of a particular dimension in context (as opposed to some global
weight) would be vulnerable to misidentifying speech when the most dominant cue
was made redundant, when in fact human listeners will adapt to using a more infor-
mative cue. A lot of the supporting research relies on carefully parameterized speech,
so one might expect such a single-density-based prototype model would fail if the
stimulus set contained instances where there was some mixture or inversion of in-
formativeness of cues, as in real speech. Having nonlinear blobby parameterizations
of prototypes doesn’t really solve the problem either, as you would then just require
an additional downstream ‘readout’ layer that could compute the conditions where
a particular dimension.

They describe future directions of research as the studying the process by which lis-
teners identify and learn the underlying dimensional structure, and so in that spirit
we can extend our model by continuing Kronrod’s emphasis on the information
contained in each perceptual dimension and allowing it to vary by context.

2.3 An extension to our model...

Instead of a static perceptual space P where a given stimulus s is mapped to a single
percept p (ie. M is injective), we can extend our very simple model by introducing
some notion of reweighting perceptual dimensions. Rather than inferring category
directly from P as in eq. 2.5, the features be ∈ P are reweighted by some weight
vectorw computed as some functionW of the representation p = M(s) and some
prior knowledge of the category structure of C

w = W (p,C) (2.6)

cs = max
({

p(ci|p ·w) : ci ∈ C
})

(2.7)

Recall that since the features a ∈ S are arbitrary, they can include time-varying fea-
tures, so the weighting function W can, for example, incorporate contextual effects
from the recent perceptual past. Category inference being dependent on W has
equivalent interpretations in the parlance of artificial neural networks and geometry:
as a self-attention mechanism (eg. [88]) giving higher weight to more informative
features, or as “collapsing” or “expanding” un/informative dimensions.

2.4 ... and its implications

The notion of different perceptual features having different weights or importance
depending on the acoustic context and the category structure of the phonemes for
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a particular language is of course far from new (eg. [81]).

A parallel line of thought to the generative models that posit phonetic identity as
some positive description of cues or perceptual features are discriminative models
that focuses on the features that can be used to tell phonemes apart. A prominent
family of discriminative models in phonetics are those that describe a hierarchy of
contrastive features[46, 89, 90]. Though they are diverse in their details, in these
models M is again typically some fixed feature of the auditory system, and the per-
ceptual space P that it constructs is some set of high-level descriptions like voicing,
frication, or articulator configuration. Typically these features are binary (eg. +/-
voiced), rather than continuous.

Figure 2.1: Contrastive hierarchy for Russian
Vowels, reproduced from [91] without permission

As an example, consider the proposed contrastive feature hierarchy for russian vow-
els from [91] (Figure 2.1). Vowel identification is dominated by the primary contrast
of +/- back, and successive constrastive features eliminate candidate phonemes un-
til the true phoneme is identified. W ’s dependence on C is exemplified (fix passive
voice..) by its treatment of “round”: -back vowels [e i] are fully determined by +/-
high, so for a percept p with -back, the weight of “round” should be 0. Put another
way, the importance of a given feature is dependent on the phonemes that are left
ambiguous without it. Any given feature’s importance depends on both the set of
available features and the set of available categories (the dependence of W , and thus
roughly the “meaning” of P, on C can also be thought of as the “task demand” on
phonetic perception, see for example the discussion of [80] in [92]). The only prob-
lem is that features like +rhotic don’t correspond to anything in the input space, and
presuppose either an articulatory or intrinsic auditory model of perception [93].

The designedness of parameterized stimuli has the same problem: shouldn’t it mat-
ter how bad they sound for claims about natural speech perception? The question
for perception, rather than computing the values of pre-programmed cues, is how
the different perceptual axes are normalized/selected/weighted. This is necessarily
a multi-timescale process: during learning, how does the auditory system learn the
space of features? When there is only one feature present, as in parameterized speech,
the auditory system is performing a qualitatively different task than during the per-
ception of natural speech — and thus elide a strong assumption on the nature of
the problem that the auditory system is solving.

But, since there is some “basic cuts” argument to be made about the auditory sys-
tem and the types of cues that it selects, there is some reason to study speech sounds
in particular, as opposed to stimuli with some arbitrary category structure: speech
sounds come pre-optimized for mammalian auditory systems a la adaptive disper-
sion. This is noted by researchers studying learning arbitrary feature spaces:

“I should emphasize, nevertheless, that there is a great deal of evidence that prac-
tice, even large amounts of it, does not produce efficient perception of acoustic
alphabets. This is clear, not only in the example of the Morse code, but even
more convincingly, perhaps, in the repeatedly unsuccessful attempts to find non-
speech sounds that will work well as part of a reading machine for the bling. Many
sound alphabets have been given a thorough trial, but none has proved adequate.
It must surely give us pause to know that, while sounds are the universal carriers
of language, only one set of sounds — those of speech — serves well.”[94]

Their conclusions — that this means that speech is special and has its own process-
ing modality — invert the problem. But the observation does indeed point to the
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joint optimization of a phonetic space over an auditory space as being constitutive
of language, and a potent reason to use speech sounds for category learning.

The notion of the informativeness of different featural dimensions has been given
a rather polemic treatment in Keith Kluender and Christian Stilp’s application of
information theory to phonetic perception[95, 96, 97, 98]. They summarize their
argument, elegantly as always

“If one’s problem is finding the right fencing to corral a unicorn, then there is
really no problem at all. Instead the problem is dissolved upon discovery that
unicorns do not exist.

Here, we ask the reader to consider the possibility that there are no objects of per-
ception [...]. Like unicorns, they do not exist at all. Instead, there are objectives for
perception. [...] Perceptual success does not require recovery or representations
of the world per se.” [95]

They argue that the central operation of sensory systems is to adapt to regularity
at multiple scales in order to efficiently extract meaningful information from their
environment. Rather than a faithful representation of articulatory maneuvers (as
in motor theory) or a warped, but still bijective relationship between the acoustic
space and perceptual space (as in perceptual warping), they argue that sensory sys-
tems discard information that is predictable based on (multiscale) context, and in-
stead represent just the unpredictable, “information-bearing” in an appropriately
Shannonistic sense, dimensions.

Though theoretically all configurations of frequencies and amplitudes are possible,
naturally produced sounds are strongly constrained by the physics of their produc-
tion – much of the variation in natural sounds is predictable. Rather than represent-
ing the fullness of acoustic variation, the auditory system adapts to redundancies
and regularities in sounds to preferentially represent only the unpredictable, infor-
mative variation in an “efficient code” [99, 100]. In the case of phonetic perception,
where the objective of the listener is to identify the phoneme intended by the speaker
rather than perceiving a sound qua sound, the listener attempts to learn auditory
features that are maximally informative of phonetic identity[101, 102, 95, 96].

This information-theoretic account provides a mechanism for learning the dimen-
sions of P and the form of W . Rather than some a priori, fixed inventory of ar-
ticulatory/acoustic cues, a listener should learn some set of perceptual features that
support the identification of phonemes given the phonemic inventory of their lan-
guage and the acoustic variability (eg. accent, environment, timbre, etc.) that they
are exposed to. Individual listeners do indeed use different combinations of cues
with different weights[103] which are stable over time[104]. Rather than learning
some category center and spread over some pre-existing perceptual feature space, the
task of the listener is to learn the feature space itself.

The difference between learning P and the operation of W is a matter of timescale:
over short timescales, W reweights the features in P depending on those features
that are contextually informative of phonetic identity. While the observation that
individual cues are informative, uninformative, and anti-informative depending on
the context of surrounding phonemes is a central feature of argument for a motor
theory[76], an information-theoretic view interprets this problem as a reweighting
of individual features: /s/ differs from /f/ along different featural axes than /s/ dif-
fers from /k/, so /s/ shouldn’t necessarily rely on the same inventory of acoustic
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features in all contexts — and particularly when cues are rendered uninformative,
the auditory system should adapt to emphasize those that still are(eg. as in [101]
and [105]). Contextual effects on phonetic categorization are of course well known
(see [74]). Where perceptual warping accounts cannot explain results where some
or all of the typical acoustic features are replaced, like sine-wave speech[106], noise-
vocoded speech[107], or joint spectrotemporal degradation[108]; an information-
theoretic view argues that listeners will adapt to use any cues that are still present (as
in [101]).

Figure 2.2: Category structure reproduced from
[109] without permission. Each stimulus (row of
four digits) is composed of four features (columns).
Category identity is determined by the first feature
(0 = A, 1 = B), but three other “irrelevant” features
are present.

The auditory system doesnot seem to operate in an entirely information-maximizing
way when identifying phonemes, however. Consider a category structure like that
used by Couchman, Coutinho, and Smith (2010, [109]) depicted in figure 2.2. Each
stimulus is composed of four binary features (columns), and stimulus identity is de-
fined by the first feature (0 = category A, 1 = category B). The remaining three fea-
tures are “epiphenomenal,” but stimuli in category B have a greater sum than those
in category A. A perfect, information-maximizing observer would learn to only at-
tend to the first dimension, but in speech and many other perceptual categories ob-
servers use many, even uninformative dimensions[109, 77] (but see [110]). Non-
speech sounds that are strictly uninformative of phonetic identity like pure tones
and sweeps can nevertheless strongly influence the perceived phoneme[111, 112],
even when the sounds are not immediately adjacent[113].

The messy compromise between learning maximally informative dimensions and
the influence of non-informative dimensions has its reflections in infant speech ac-
quisition as well. Infants are able to discriminate between the phonemes of any lan-
guage, but during language acquisition become specifically attuned to the phonemes
of the language(s) they are taught. This is typically discussed as learning the statisti-
cal regularities of speech sounds [114, 86], and the act of emphasizing the statistical
regularity must necessarily mean collapsing those phonetic contrasts that are not
present in the language – they aren’t informative because no one uses that contrast.
Infants that are better at discriminating the phonemes in their language are worse at
discriminating those in a non-native language[114], but the ability doesn’t drop to
zero, indicating they are still present in some form, perhaps as a balance between “ex-
ploration” of potentially unaccounted for variation with “exploitation” of learned
invariances.

Such an influence of many, imperfect stimulus dimensions on perception is our sign-
post to indicate we’ve arrived back in the bewildering little shire of category struc-
tures with family resemblance.

2.5 NeuralMechanisms

Until now our very simple model has been entirely theoretical, describing the gen-
eral requirements of the computation of phonetic category identity, but the form
of any biological computation is necessarily constrained by the substrate of its im-
plementation (roughly, Marr’s levels, for a recent discussion see [115]). Though
the model could be retained in its current form by recasting P as the neural repre-
sentation of perceptual dimensions from which category c ∈ C is inferred, this
would require strong assumptions about the form of the neural representation of
perceptual dimensions, and in a practical modeling context assumes we have enough
information to infer it. To preserve generality at the cost of complexity, we add an
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additional “layer” to the model,

n = {n0, ni, ...ndn : n ∈ Ndm ⊆ Rdn} (2.8)

where a neural state n, a dn-dimensional instantaneous firing rate of neurons ni in
some neural manifold Ndm of dimension dm embedded within Rdn. The mani-
fold embedding N reflects the intrinsic constrants network structure poses on the
possible states n ∈ N ⊆ R, but the embedding is arbitrary.

The neural layer is incorporated by modifying equation 2.6 such that

Mn = f(s, p) : S → N (2.9)
Mp = f(n) : N → P (2.10)

where some sensory input s is mapped to some neural state n, which supports some
perceptp from which phonetic category is computed. The dependence ofMn onp
reflects the possibility of top-down influence on the neural representation of a given
stimulus.

What we’re doing here is largely accounting for incomplete observation of the im-
plementation of perceptual representation. For example there might be some real
perceptual dimension that is not independently represented in the neural space, but
is computed “downstream” by some structure that we’re not observing. In the case
of making a claim on the structure of neural representation (eg. that short-run firing
rates are meaningful) with full observation, N = P, where P is then the perceptual
space represented by the brain from which category identity is computed. This is
the typical assumption of “decoding analyses.” Instead our expansion of the model
allows us to consider a “basis set” of neural representations that are non-isomorphic
with their perceptual representations.

Arguably a computational strategy common to all sensory systems is to exploit reg-
ularities in the statistical structure of the natural world to form an efficient sensory
representation[116, 117, 99, 98, 118, 119]. Though the task of phonetic perception
is a truly monstrous one, work since the heyday of motor theories has demonstrated
the remarkable ability of the auditory system to perform the fundamental compu-
tations of phonetic categorization has given the problem an air of tractability. And
though we still are methodologically limited in our ability to study spech perception
in humans at the spatiotemporal scales of its computation, work in animal models
as well as recent advances in human brain electrophysiology have given some of the
first glimpses.

Several features of our model are happily known to be true of neurons in mam-
malian auditory cortex.

Neurons in primary auditory cortex jointly encode multiple dimensions of sound
[117]. In ferrets presented with an array of stimuli that varied by pitch, timbre, and
azimuth [120], more A1 neurons were observed to be sensitive to two or three di-
mensions (36% and 29%, respectively) than a single dimension (23%). In a subset of
neurons, these responses were temporally complex such that the dimensions could
be partially recovered by separating sustained from onset responses [121]. Similar
results have been observed in marmosets (combined sensitivity to amplitude mod-
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ulation, frequency modulation, etc. [59]) and in studies that estimated the dimen-
sionality of receptive fields from complex stimuli like dynamic ripples in cats [122].
This is perhaps unsurprising, as cortical neurons being sensitive to multiple dimen-
sions of a stimulus is a trivial reformulation of the well-known model of hierarchical
processing throughout the auditory system (for a review, see [123]): cortical neu-
rons representing “higher order” properties of a stimulus necessarily implies sensi-
tivity to multiple features of the stimulus (provided a generously-enough low-level
description of the stimulus feature space).

Maciello and colleagues recently argued that joint, rather than independent encod-
ing of multiple stimulus dimensions is computationally advantageous [124]. Though
sensitivity to multiple features makes response patterns ambiguous with respect to
the value of any individual dimension, joint encoding provides more information
about all represented dimensions to a downstream decoder. If it is the case that joint
encoding is constitutive of auditory representations, and individual stimulus or per-
ceptual dimensions are never (or rarely) represented independently, behavior that
reflects sensitivity to family resemblance structure rather than optimal rule-based
categorization is parsimonious. If all features are estimated simultaneously, influ-
ence of “nontarget” dimensions becomes unsurprising.

A rich body of research has described the many conditions that auditory representa-
tions are modulated by context (for a review, see [125]) at timescales as short as hun-
dreds of milliseconds[126, 127]. Processes like forward masking, stimulus-specific
adaptatation (SSA), and suppression of background noise all reflect the general prin-
ciple that auditory representations adapt to predictable acoustic statistics in order
to form robust, invariant representations of auditory objects[128] by emphasizing
the maximally informative dimensions[122].

Adaptation to noise or stimulus statistics can be characterized as a short-term ‘reweight-
ing’ of features through processes like synaptic depression[129, 130] or microcircuit
interactions[131, 132]. In tasks based on simple parametric sounds, representations
of task-relevant stimuli are enhanced on the order of minutes[133]. Animals trained
on multiple tasks had neurons that adapted their receptive fields to facilitate the dif-
ferent task demands[134] and reward structures[135]. David and Shamma [136]
argue that short-term integration of auditory context could also be a substrate for
representing and comparing auditory features that occur through time.

The auditory system is also plastic on longer timescales to represent the dimensions
of sound that are maximally informative to the demands placed on it. Rats trained
using a single set of stimuli had differential enhancement of sensitivity to frequency
or intensity depending on which they were trained to attend to[137]. Bieszczad
and Weinberger observed that such enhancement correlated with the strength of a
learned memory trace[138].

Speech in the Brain

The Superior Temporal Gyrus (STG) in humans, or secondary parabelt regions in
some other species, of auditory cortex is the primary candidate for representation
of higher-order auditory features used in speech perception. Damage to the left
posterior Superior Temporal Gyrus, containing BA 22 “Wernicke’s area,” has long
been associated with receptive aphasia, but a variety of human and animal studies
have given further insight on the character of speech processing within the STG.

A series of studies from Edward Chang and colleagues recording electrophysiologi-
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cal activity in human temporal lobe using high-density multi-electrode arrays have
contributed greatly to our understanding of the encoding of speech sounds, partic-
ularly in the superior temporal gyrus (STG) [139].

Recordings of high-gamma (70-150Hz) power show individual electrode sites in
middle to posterior STG are selective to acoustically similar groups of phonemes
(eg. obstruent vs. sonorant selectivity, plosive vs. fricative selectivity, etc.) in hu-
mans passively listening to natural speech samples [140]. These phonetic sensitivites
were reflective of sensitivity to multiple complex acoustic features that are correlated
within phonetic categories and that “maximiz[e] vowel discriminability in the neu-
ral domain.” [140]. Lower frequency (<50Hz) macrocortigraphy recordings also
show that subpopulations of pSTG neurons carry information that allows discrimi-
nation of consonant-vowel token category analogously to behavioral categorization
[141].

In the anterior STG (aSTG), individual sorted units recorded from one person demon-
strated complex, speech-specific reponses when one subject was presented with a
wide array of sounds [142]. Many (66 of 141) units demonstrated selectivity to one
or a few words that was invariant across speaker. Speech selectivity was only par-
tially explained by a linear combination of acoustic features (linear spectrograms
and MFCCs), and did not (over-)generalize to noise-vocoded speech, time-reversed
speech. Unit responses to individual phonemes also differed by the recent phonetic
past, all together suggesting that some units in aSTG are selective to the fine spec-
trotemporal structure of speech sounds at single-to-few phoneme timescales [142].

Though acoustic response profiles are spatially heterogeneous across the STG and
between individuals [140, 143], there does appear to be some functional distinc-
tion between anterior and posterior STG with respect to speech sound processing.
In macroelectrode recordings in humans listening to natural sentences, pSTG elec-
trodes selectively track phrase-level onsets, while aSTG electrodes have more sus-
tained responses through a phrase. The dissociation between onset and sustained re-
sponses was not reflective of the discontinuous vs. continuous nature of consonants
and vowels, as selectivity to groups of phonemes (vowels, plosives, nasals, etc.) was
mixed in both anterior and posterior STG [143]. Information useful for discrim-
ination of phonetic identity in the pSTG develops and reaches a peak 100-150ms
or so after speech sound onset [140, 141], and neural state space projections onto
axes representing the activity of neurons sensitive to sound onset or sustained sound
show a reliable sweep between posterior and anterior STG on the order of seconds.
In short, the picture that emerges is multiple “codes” or “codecs” that overlap in
multiple regions at multiple timescales.

Animal research of neural mechanisms of speech sound processing is quite sparse,
and so our understanding is relatively coarse and by analogy from more general au-
ditory research. Speech training in rats evokes a complex set of changes to acoustic
response properties in several auditory cortical fields loosely analogous to secondary
cortical areas in humans[144]. Neurons in the anterior auditory field (AAF) and
A1 were more responsive to the initial consonant in consonant-vowel (/CV/) pairs
in trained vs. control rats (27% and 57% more spiking activity, respectively). Addi-
tionally, the proportion of neurons that were responsive to 2kHz tones (the spec-
tral peak in the speech tokens used) increased by 65% in AAF and 38% in A1 after
speech training compared to control rats. In contrast, in response to vowels VAF
and PAF were less responsive following speech training (42% and 30% fewer spikes,
respectively, vs. controls). In neurons that had similar frequency tuning, responses
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to consonants were more correlated in AAF and VAF, and responses to vowels were
less correlated in AAF, A1, and VAF after speech training (vs. controls)[144].

These results [144] may not establish definitive roles for secondary auditory fields
in rodent auditory cortex, but in sum do suggest that speech training induces long-
lasting plasticity in auditory cortex, and suggests that processing may be distinct for
different acoustic features in anterior vs. posterior fields as in humans. Mice trained
to discriminate speech sounds were returned to chance following lesions of auditory
cortex [4], indicating its necessity. Task-specific plasticity [145] and contribution
to processing task-relevant auditory stimulus categories [146] has been previously
demonstrated in AAF, which is thought to operate as a parallel processing system,
with response latencies comparable to or lower than A1 in cats [147] and mice [148].
PAF is a secondary auditory cortical area and thought to be downstream from both
A1 and AAF [149, 150]. Though their functional specialization of computational
role might not be equivalent in humans, it is parsimonious to assume that primary
and secondary auditory cortical areas in nonhuman mammalian auditory systems
process acoustic information in such a way that supports the recognition of pho-
netic identity.

2.6 Towards a Research Program

In lightly constraining the constitution of N, loosely the neural “representation”
of phonetic information, the human and animal results hint at the dissociation be-
tweenN andP in our model — en passant to the statement of the research problem.

Suppose that one dimension bvot ∈ P is the voice onset time, which dissociates
voiced from unvoiced consonants (eg. /b/ vs. /p/) as the time between the onset
of phonation and the occlusion of the stop. Further suppose a neural system anal-
ogous to the temporal landmark model suggested by [143] where the high-energy
plosive of the occlusion is “encoded” by the activity of some region analogous to the
phrase-onset sensitivity of pSTG, and the sonorant, spectral quality of the voicing
is encoded by another region. In this scheme, some downstream region infers VOT
by comparing the relative timing of gross spiking activity between these two regions.
In this hopelessly naïve instantiation of our model, the dimension bvot is some real-
valued (though not necessarily linear) value from negative to positive voice onset
times. Such a dimension is not present in N as characterized by the n-dimensional
space of, say, instantaneous firing rate of n neurons, requiring Mp, the mapping
between them.

The dissociation of the descriptions of N and P thus, in our model, defines the re-
search problem:

1) We characterize the problem the brain faces in auditory phonetic perception is
to learn some perceptual space P of maximally informative perceptual dimensions
that supports the identification of received phonemes by flexibly adapting to the
information present in the phoneme.

2) Understanding the neural mechanisms of auditory phonetic perception is de-
scribing the way P is implemented by some neural state manifold N in such a way
that the information loss by the model projecting N to P is minimized.

It is not necessarily the case that we should expect to find neurons, or even collec-
tions of neurons, whose time-averaged firing rate is the literal measurement of the
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perceptual dimensions used to compute phonetic identity. We also don’t expect to
be able to estimate the full manifold of all neurons that are involved with the pro-
cess, so there will ultimately always be some gap between P and N. Roughly, kept
independent,P is the level of “representation” — the basis from which the brain de-
rives its use of phonetic information, though we dont’ characterize P as the unique
source of information, as information is represented at multiple scales (syntactic, se-
mantic) and is bidirectional (predictive as well as receptive) — while N is the level
of “implementation”.

This distinction may read as trivial, but it precludes a majority of the common
methodological kinks of contemporary cognitive neuroscience. The implicit assump-
tion of “decoding”-based analysis strategies is that neural representation is encoded
in the language of time-averaged firing rate, and that the accuracy of some (usually
uninterrogated) classification algorithm on the timeseries of firing rates (or BOLD
level, or EEG bandpass amplitude, etc.) is reflective of the presence or absence of
category information in the data. The same assumption is made in the case of so-
called “Representational Similarity Analysis,” and any number of other analytical
ruts that uncritically characterize the geometry of the brain and the perceptual real-
ity it supports as euclidean spaces with the axes of whatever recording methodology
is handy for the dataset.

In both, the geometry of the perceptual space is also typically uninterrogated, where
the parameters that were used to synthesize the stimuli, or the category labels im-
posed by the researcher are analyzed as if they were faithfully represented by the
brain. This, despite the creation of non-isomorphic representations of physical phe-
nomena being the entire goal of efficient perception (see [97, 151]) — if represen-
tation operated like an isomorphism then perceptual learning would be entirely un-
necessary.

Rather than assuming the perceptual structure of phonemes by prespecifying cues
and synthesizing sounds, or assuming the representational language of the brain to
be time-averaged firing rate, we take the role of empirical geometers and attempt to
preserve as much of the natural complexity of the problem and derive both from
the data. The combination of apparent category structure without clear parameter-
ization of naturally produced phonemes is, I argue, a promising way to interrogate
the similarly loose category structure of the neural computations that support their
perception.

(Here is where I would have continued on to describe the experiments that would
follow, if I did not abruptly change disciplines.)



II
Autopilot





A Turn to Tools
The tools that we used for the “Mice Can Learn Phonetic Categories” paper were
hopelessly broken, and so I went in search of better ones. To my surprise, none
could be found — there were pieces and parts, but no generalizable experimental
software for behavioral experiments.

We had been using a piece of software that required an entire desktop computer per
experimental chamber, was initially not version controlled and relied on copying
and pasting code on a flashdrive between each computer, and had no documenta-
tion of any kind. Without any frame of reference for research software, I couldn’t
tell if the bugs we were experiencing were “normal.” One particularly memorable
one that convinced me we could do better was when Lucas let me know that sud-
denly there was a 5-10 second lag in between every phase of every trial, and it turned
out that any time there was an error (which there always were), the program was
booting an email server and using some hardcoded credentials to email them it to the
author — but when the author changed their password, the server would try to send
until it timed out, blocking the program. I was convinced we should write a new
tool. I was warned against this many times, one of which being a well-known visit-
ing PI telling me that “you’ll either publish no papers, or be on everybody’s paper,
but almost certainly the former.” I have this personality flaw where I would rather
spend the time making something that works than spending several years struggling
with something terrible, and did it anyway.

It seemed like it should be possible to run each experiment from a lower powered
computer, but all of the tools that I could find were using state machines on mi-
crocontrollers like Arduinos which were still dependent on some host computer to
control them. I thought that it might be easier to run the entire software on the
board, and so turned to the Raspberry Pi. I had started grad school with maybe a
few dozen hours of programming experience and had so far experienced it mostly
as grinding against an impenetrable wall, but after seeing how Santiago had written
taskontrol in Python realized that it was possible for code to make sense. Most of
what I had been struggling with was a byproduct of MATLAB being godforsaken
language that encourages bad programming practices, so I abandoned it and started
exploring the wider world of languages and programming practices. I adopted some
of the ideas from Ratrix: each of the components of the experiment like tasks, stim-
uli, etc. should be separable building blocks, spent two weeks reading through the
Python tutorial and language references, and using taskontrol for inspiration for
code structure got to work on what would become Autopilot.

The realization that autonomous networked agents and objects should be the core
of the system came relatively quickly, influenced by the manifesto-like zeromq guide
— though not quickly enough to avoid my inexperience with programming baking
in some incompatible design decisions that we’re still working out roughly five years
later. This was at a time when I was still spending late nights in the lab misappropri-
ating the one computer with a DVD drive to rip movies for a private torrent tracker
(sorry Mike) and watching the traffic in the swarm1, and so I started to wonder if 1 one of my oldest computer habits, it is a hypnotic

window into what the internet could be like.that same idea of many linked computers working together could be used for exper-
iments. The more I leaned into that idea the more powerful it seemed, and I began
to imagine a swarm of raspis being able to run everything in the lab. We haven’t
quite made it there yet, but nothing has convinced me that dream can’t be real.

https://github.com/sjara/taskontrol
https://docs.python.org/3/tutorial/index.html
https://zguide.zeromq.org/
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AUTOPILOT
Automating experiments with lots of Raspberry Pis

Neuroscience needs behavior, and behavioral experiments require the coordina-
tion of large numbers of heterogeneous hardware components and data streams.
Currently available tools strongly limit the complexity and reproducibility of
experiments. Here we introduce Autopilot, a complete, open-source Python
framework for experimental automation that distributes experiments over net-
worked swarms of Raspberry Pis. Autopilot enables qualitatively greater experi-
mental flexibility by allowing arbitrary numbers of hardware components to be
combined in arbitrary experimental designs. Research is made reproducible by
documenting all data and task design parameters in a human-readable and pub-
lishable format at the time of collection. Autopilot provides a high-level set of
programming tools while maintaining submillisecond performance at a fraction
of the cost of traditional tools. Taking seriously the social nature of code, we
scaffold shared knowledge and practice with a publicly editable semantic wiki
and a permissive plugin system. Autopilot’s flexible, scalable architecture allows
neuroscientists to work together to design the next generation of experiments to
investigate the behaving brain.

DOCS

SOURCE

WIK I

PAPER SOURCE

PAPER PLUG IN

https://docs.auto-pi-lot.com
https://github.com/auto-pi-lot/autopilot
https://wiki.auto-pi-lot.com
https://github.com/auto-pi-lot/autopilot-paper
https://github.com/auto-pi-lot/plugin-paper


3
Introduction

Animal behavior experiments need precision and patience, so we make com-
puters do them for us. The complexity of contemporary behavioral experiments,
however, presents a stiff methodological challenge. For example, researchers might
wish to measure pupil dilation[152], respiration[153], and running speed[154], while
tracking the positions of body parts in 3 dimensions[155] and recording the activity
of large ensembles of neurons[156], as subjects perform tasks with custom input de-
vices such as a steering wheel[157] while immersed in virtual reality environments
using stimuli synthesized in real time[158, 159]. Coordinating the array of neces-
sary hardware into a coherent experimental design—with the millisecond precision
required to study the brain—can be daunting.

Historically, researchers have developed software to automate behavior experiments
as-needed within their lab or relied on purchasing proprietary software (eg. [160]).
Open-source alternatives have emerged recently, often developed in tandem with
hardware peripherals available for purchase [161, 162]. However, the diverse hard-
ware and software requirements for behavioral experiments often lead researchers
to cobble together multiple tools to perform even moderately complex experiments.
Understandably, most software packages do not attempt to simultaneously support
custom hardware operation, behavioral task logic, stimulus generation, and data
acquisition. The difficulty of designing and maintaining lab-idiosyncratic systems
thus defines much of the everyday practice of science. Idiosyncratic systems can hin-
der reproducibility, especially if the level of detail reported in a methods section is
sparse[163]. Additionally, development time and proprietary software are expen-
sive, as are the custom hardware peripherals that are required to use most available
open-source behavior software, stratifying access to state-of-the-art techniques ac-
cording to inequitable funding distributions.

Technical challenges are never merely technical: they reflect and are structured by
underlying social challenges in the organization of scientific labor and knowledge
work. Lab infrastructure occupies a space between technology intended for individ-
ual users and for large organizations: that of groupware1 [165, 164]. Experimental 1 “Our original definition of groupware was

‘intentional group processes plus software to
support them.’ It has both computer and human
components: software of the computer and
‘software’ of the people using it. [...] Recently
this definition has been extended to include other
more expressly cultural factors including myth,
values and norms. The computer software should
reflect and support a group’s purpose, process and
culture.”

Peter and Trudy Johnson-Lenz (1991)[164]

frameworks thus face the joint challenge of technical competency while also embed-
ding in and supporting existing cultures of practice. Behind every line of code is
an unwritten wealth of technical knowledge needed to make use of it, as well as an
unspoken set of beliefs about how it is to be used — labs aren’t born fresh on re-
lease day ready to retool at a moment’s notice, they’re held together by decades of
duct tape and run on ritual. The boundaries of this “contextual knowledge” extend
fluidly beyond individual labs, structuring disciplinary, status, and role systems in
scientific work[166]. Given their position at the intersection of scientific theory,
technical work, data production, and social organization, experimental frameworks
are an elusive design challenge, but also an underexplored means of realizing some
of our loftier dreams of open, accessible, and collaborative science.
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Here we present Autopilot, a complete open-source software and hardware frame-
work for behavioral experiments. We leverage the power of distributed computing
using the surprisingly capable Raspberry Pi 42 to allow researchers to coordinate ar- 2 See Table 5.2
bitrary numbers of heterogeneous hardware components in arbitrary experimental
designs.

Autopilot takes a different approach than existing systems to overcome the technical
challenges of behavioral research: just usemore computers. Specifically, the advent of
inexpensive single-board computers (ie. the Raspberry Pi) that are powerful enough
to run a full Linux operating system allows a unified platform to run on every Pi
or other computer in the system so that they can work together seamlessly. At the
core of its architecture are networking classes (Section 5.8) that are fast enough to
stream electrophysiological or imaging data and flexible enough to make the mutual
coordination of hardware straightforward.

This distributed design also makes Autopilot extremely scalable, as the Raspberry
Pi’s $35-$75 price tag makes it an order of magnitude less costly than comparable
systems (Section 4.3.4). Its low cost doesn’t come at the expense of performance or
useability: Autopilot provides an approachable, high-level set of tools that still have
input and output precision between dozens of microseconds to a few milliseconds
(Sections 4.1.2 and 6).

Autopilot balances experimental flexibility with support. Its task design infrastruc-
ture is flexible enough to perform arbitrary experiments, but also provides support
for data management, plotting task progress, and custom training regimens. We
try to bridge multiple modalities of use: use its modular framework of tools out of
the box, or use its complete low-level API documentation3 to hack it to do what 3 https://docs.auto-pi-lot.com
you need. Rather than relying on costly proprietary hardware modules, users can
take advantage of the wide array of peripherals and extensive community support
available for the Raspberry Pi. Autopilot is designed to be permissive: build your
whole experiment with it or just use its networking modules, adapt it to existing
hardware, integrate your favorite analysis tool. We designed Autopilot to play nice
with other software libraries and existing practices rather than force you to retool
your lab around it.

Finally, we have designed Autopilot to help scientists do reproducible research and
be good stewards of the human knowledge project. Experiments are not written as
scripts that are reliant on the particularities of each researcher’s hardware configu-
ration. Instead, we have designed the system to encourage users to write reusable,
portable experiments that can be incorporated into a public central library while
also allowing space to iterate and refine without needing to learn complicated pro-
gramming best-practices to contribute. Every parameter that defines an experiment
is automatically saved in publication-ready format, removing ambiguity in reported
methods and facilitating exact replication with a single file. Its plugin system is built
atop a densely-linked semantic wiki4 that fluidly combines human- and computer- 4 https://wiki.auto-pi-lot.com
readable, communally editable technical knowledge that surrounds your experiments
with the software that performs them.

We begin by defining the requirements of a complete behavioral system and evalu-
ating two current examples (Sections 3.1 and 3.2). We then describe Autopilot’s
design principles (Section 4) and how they are implemented in the program’s struc-
ture (Section 5). We close with a demonstration of its current capabilities and our
plans to expand them (Sections 6 and 7).

https://docs.auto-pi-lot.com
https://docs.auto-pi-lot.com
https://wiki-auto-pi-lot.com
https://wiki.auto-pi-lot.com
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3.1 Existing Systems for Behavioral Experiments

At minimum, a complete system to automate behavioral experiments has 6 require-
ments:

1. Hardware to interact with the experimental subject, including sensors (eg. pho-
Hardwaretodiodes, cameras, rotary encoders) to receive input and actuators (eg. lights,

motors, solenoids) to provide feedback.

2. Some capability to synthesize and present sensory stimuli. Ideally both discrete
Stimulistimuli, like individual tone pips or grating patches, and continuous stimuli, like

those used in virtual reality experiments, should be possible.

3. A framework to coordinate hardware and stimuli as a task. Task definition
Tasksshould be flexible such that it facilitates rather than constrains experimental de-

sign.

4. A data management system that allows fine control of data collection and format.
DataData should be human readable and include complete metadata that allows inde-

pendent analysis and reproduction. Ideally the program would also allow some
means of realtime data processing of sensor values for use in a task.

5. Some means of visualizing data as it is collected in order to observe task status. It
Visualizationshould be possible to customize visualization to the needs and structure of the

task.

6. Finally, a user interface to control task operation. The UI should make it possible
UIfor someone who does not program to operate the system.

We will briefly describe two other systems that meet this definition of completeness:

Included Partial/Limited

pyControl and Bpod.

3.1.1 pyControl

pyControl[167] is a behavioral framework built in Python by the Champalimaud pyControl

hardware

stimuli

tasks

data
viz

UI

Foundation. It uses the micropython microcontroller (“pyboard”) as its primary
hardware device along with several extension boards sold by openephys. The py-
board has four I/O ports, or eight with a multiplexing expander board. Schematics
are available for many other hardware components like solenoid valve drivers and
rotary encoders. Multiple pyboards can be connected to a computer via USB and
run independent tasks simultaneously with a GUI.

There is limited support for some parametrically defined sound stimuli, presented
from a separate amplifier connected using the I2C protocol. Visual stimuli are un-
supported.

Like most behavioral software, pyControl uses a finite-state machine formalism to
define its tasks. A task is a set of discrete states, each of which has a set of events that
transition the task from one state to another. pyControl also allows timed transi-
tions between states, and one function that is called on every event for a rough sort
of parallelism. pyControl also allows the use of external variables to control state
logic, making these state machines more flexible than strict finite state machines.

D 0 2
D 8976 3
D 8976 1
P 8976 Print Statement
D 10162 3
D 10163 2

Figure 3.1: pyControl data is stored as plain text,
each line having a type (like Data or Print),
timestamp, and state

https://pycontrol.readthedocs.io/en/latest/
https://micropython.org/
http://www.open-ephys.org/store/pycontrol
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All events and states are stored alongside timestamps as a plain text log file, one file
per subject per session (Figure 3.1). Analog data are stored in a custom binary seri-
alization that alternates 4-byte data and timestamp integers.

There is only one plot type available in the GUI, a raster plot of events, and no facil-
ity for varying the plot by task type. The GUI is otherwise quite capable, including
the ability to batch run subjects, redefine task variables, and configure hardware.

3.1.2 Bpod

Bpod is primarily a collection of hardware designs and an assembly service run by Bpod

hardware

stimuli

tasks

data
viz

UI

Sanworks LLC. Similar to pyControl, each Bpod behavior box is based on a finite-
state machine microcontroller with four I/O ports. Additional hardware modules
provide extended functionality. Bpod is controlled using its own MATLAB pack-
age, though there are at least two other third-party software packages, BControl and
pyBpod, that can control Bpod hardware. A task is implemented as a MATLAB
script that constructs a new state machine for each trial, uploads it to the Bpod, and
waits for the trial to finish. As a result, only one Bpod can be used per host computer,
or at least per MATLAB session. Data are stored as trial-split events in a MATLAB
structure.

There are a few basic plots for two-alternative forced choice tasks, but there doesn’t
seem to be a prescribed way to add additional plots. Bpod has a reasonably complete
GUI for managing the hardware and running tasks, but it is relatively technical (Fig-
ure 3.2).

Figure 3.2: A Bpod event plot (above) showing
the results of individual behavioral trials, and the
Bpod GUI (below).

For brevity we have omitted many other excellent tools that perform some subset
of the operations of a complete behavioral system, or otherwise have a substantial
difference in scope.5

5 Other tools:
- Bonsai[168] - site, git
- Expyriment[169] - site, git
- PsychoPy[170] - site, git
- OpenSesame[171] - site, git
- SMiLE - docs
- ArControl[172] - git
- and see OpenBehavior

3.2 Limitations of Existing Systems

We see several limitations with these and other behavioral systems:

• Hardware - Both Pycontrol and Bpod strongly encourage users to purchase a
limited set of hardware modules and add-ons from their particular hardware
ecosystem. If a required part is not available for purchase, neither system pro-
vides a clear means of interacting with custom hardware aside from typical digi-
tal inputs and outputs, requiring the user to ‘tack on’ loosely-integrated compo-
nents. There is also a hard limit on the number of hardware peripherals that can
be used in any given task, as there is no ability to use additional pyboards or Bpod
state machines in a single task. The microcontrollers used in these systems also
impose strong limits on their software: neither run a full, high-level program-
ming language6. We will discuss this further in section 4.2.1. A broader limita-

6 Bpod runs custom firmware written in C++
on a Teensy 3.6 microcontroller. pyControl’s
pyboard runs micropython, a subset of Python
that excludes canonical libraries like numpy[173]
or scipy[174]

tion of existing systems is the difficulty of flexibly integrating diverse hardware
with the analytical tools necessary to perform the next generation of behavioral
neuroscience experiments that study “naturalistic, unrestrained, and minimally
shaped behavior”[175].

https://www.sanworks.io/about/about.php
https://github.com/sanworks/Bpod_Gen2
https://github.com/sanworks/Bpod_Gen2
https://brodylabwiki.princeton.edu/bcontrol/index.php/Main_Page
https://pybpod.github.io/
https://bonsai-rx.org/
https://github.com/bonsai-rx/bonsai
https://www.expyriment.org/
https://github.com/expyriment/expyriment.git
https://www.psychopy.org/
https://github.com/psychopy/psychopy
https://osdoc.cogsci.nl/
https://github.com/smathot/OpenSesame
https://smile-docs.readthedocs.io/en/latest/
https://github.com/chenxinfeng4/ArControl
http://openbehavior.com/
https://github.com/sanworks/Bpod_StateMachine_Firmware
https://www.pjrc.com/store/teensy36.html
https://micropython.org/
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• Stimuli - Stimuli are not tightly integrated into either of these systems, requiring
the user to write custom routines for their synthesis, presentation, and descrip-
tion in the resulting data. Neither are capable of delivering visual stimuli. Since
the publication of the initial version of this manuscript, Bpod has added support
for a HiFiberry sound card that we also describe here[176], but the sound gen-
eration API appears to be unchanged, with a single method for generating sine
waves. Some parametric audio stimuli are included in the pyControl source code
but we were unable to find any documentation or examples of their use.

for currentTrial = 1:MaxTrials
% new state machine every trial
sma = NewStateMachine();

% add states and transitions
sma = AddState(sma,

'Name', 'Wait', ...
'Timer', 0,...
'StateChangeConditions', ...
{'Port2In', 'Delay'}, ...
'OutputActions', ...
{'AudioPlayer1','*'});

% add more states...

% upload and run task
SendStateMatrix(sma);
RawEvents = RunStateMatrix;

% manually gather data and params
BpodSystem.Data = AddTrialEvents(

BpodSystem.Data, RawEvents);

% plotting in the main loop
UpdateSideOutcomePlot(...);
UpdateTotalRewardDisplay(...);

% manually save data
SaveBpodSessionData;
end

Figure 3.3: Bpod’s general task structure.

• Tasks - Tasks in both systems require a large amount of code and effort duplica-
tion. Neither system has a notion of reusable tasks or task ‘templates,’ so every
user typically needs to rewrite every task from scratch. Bpod’s structure in par-
ticular tends to encourage users to write long task scripts that contain the entire
logic of the task including updating plots and recreating state machines (Figure
3.3). Since there is little notion of how to share and reuse common operations,
most users end up creating their own secondary libraries and writing them from
scratch. Another factor that contributes to the difficulty of task design in these
systems is the need to work around the limitations of finite state machines, which
we discuss further in section 5.3.3.

• Data - Data storage and formatting is basic, requiring extensive additional pro-
cessing to make it human readable. For example, to determine whether a subject
got a trial correct in an example Bpod experiment, one would use the following
code:
SessionData.RawEvents.Trial{1,1}.States.Punish(1) ~= NaN

As a result, data format is idiosyncratic to each user, making data sharing depen-
dent on manual annotation and metadata curation from investigators.

• Visualization & GUI - The GUIs of each of these systems are highly technical,
and are not designed to be easily used by non-programmers, though pyControl’s
documentation offsets much of this difficulty. Visualization of task progress is
quite rigid in both systems, either a timeseries of task states or plots specific to
two-alternative forced choice tasks. In the examples we have seen, adapting plots
to specific tasks is mostly ad-hoc use of external tools.

• Documentation - Writing good documentation is challenging, but particularly
for infrastructural systems where a user is likely to need to modify it to suit their
needs it is important that it be possible to understand its lower-level workings.
PyControl has relatively good user documentation for how to use the system,
but no API-level documentation. Bpod’s documentation is a bit more scattered,
and though it does have documentation for a subset of its functions, there is little
indication of how they work together or how someone might be able to modify
them.

• Reproducibility - As of November 2020, pyControl has versioned task files
that append a hash to each version of a task and save it along with any produced
data, tying the data to exactly the code that produced it. PyControl’s most recent
releases have explicit version numbers, but these don’t appear to be saved along
with the data. Bpod stores neither code nor task versions in its data. Neither
system saves experimental parameter changes by default —and the GUIs of both
allow parameters to be changed at will— and so critical data could be lost and ex-
periments made unreproducible unless the user writes custom code to save them.

https://github.com/sanworks/Bpod_Gen2/blob/df6cd0c7d5df8247b02077b05fc263f79b86b096/Examples/Protocols/Sound/HiFiSound2AFC_TrialManager/HiFiSound2AFC_TrialManager.m
https://github.com/sanworks/Bpod_Gen2/blob/1cb181dffbb7394acd18819f1d268fd9dec6ec5b/Functions/Internal%20Functions/GenerateSineWave.m
https://github.com/sanworks/Bpod_Gen2/blob/1cb181dffbb7394acd18819f1d268fd9dec6ec5b/Functions/Internal%20Functions/GenerateSineWave.m
https://github.com/pyControl/code/blob/master/pyControl/audio.py
https://github.com/sanworks/Bpod_Gen2/blob/df6cd0c7d5df8247b02077b05fc263f79b86b096/Examples/Protocols/Sound/AnalogSound2AFC/AnalogSound2AFC.m
https://github.com/sanworks/Bpod_Gen2/blob/df6cd0c7d5df8247b02077b05fc263f79b86b096/Examples/Protocols/Sound/AnalogSound2AFC/AnalogSound2AFC.m
https://github.com/sanworks/Bpod_Gen2/blob/master/Examples/Protocols/Light/Light2AFC/Light2AFC.m
https://pycontrol.readthedocs.io/en/latest/
https://sites.google.com/site/bpoddocumentation/home
https://sites.google.com/site/bpoddocumentation/user-guide/function-reference
https://github.com/pyControl/code/blob/cc6e7ab67c18388dea85b3ac48ac66a65ffa12f8/ChangeLog.txt#L74
https://pycontrol.readthedocs.io/en/latest/user-guide/pycontrol-data/#versioned-task-files
https://github.com/pyControl/code/releases
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Bpod has an undocumented plugin system, but neither system has a formal sys-
tem for sharing plugins or task code, requiring work to be duplicated across all
users of the system.

• Integration and Extension - Integration with other systems that might han-
dle some out-of-scope function is tricky in both of these example systems. All
systems have some limitation, so care must be taken to provide points by which
other systems might interact with them. One particularly potent example is the
use of Bpod in the International Brain Laboratory’s standardized experimental
rig[177], which relies on a single-purpose 93 page PDF to describe how to use
the iblrig library, which consists of a large amount of single-purpose code for
stitching together pybpod with bonsai for controlling video acquisition. Even
if a system takes a large amount of additional work to integrate with another,
hopefully the system allows it to be done in a way such that it can be reused and
shared with others in the future so they can be spared the trouble. The relatively
sparse documentation and the high proportion of ibl-specific code present in the
repository make that seem unlikely.

Some of these limitations are cosmetic—fixable with additional code or hardware—
but several of the most crucial are intrinsic to the design of these systems.

These systems, among others, have pioneered the development of modern behav-
ioral hardware and software, and are to be commended for being open-source and
highly functional. One need look no further for evidence of their usefulness than
to their adoption by many labs worldwide. At the time that these systems were de-
veloped, a general-purpose single-board computer with performance like the Rasp-
berry Pi 4 was not widely available. The above two systems are not unique in their
limitations7, but are reflective of broader constraints of developing experimental 7 And Autopilot, of course, also has many of its

own weaknessestools: solving these problems is hard. We are only able to articulate the design prin-
ciples that differentiate Autopilot by building on their work.

https://github.com/sanworks/Bpod_Gen2/commit/10ad997555086afb93dfc1080091acaa58d740f9
https://figshare.com/articles/preprint/A_standardized_and_reproducible_method_to_measure_decision-making_in_mice_Appendix_3_IBL_protocol_for_setting_up_the_behavioral_training_rig/11634732
https://github.com/int-brain-lab/iblrig
https://github.com/int-brain-lab/iblrig/blob/18569278fc2d8cd3266adb2a5f660a43f8f2582e/iblrig/bonsai.py
https://iblrig.readthedocs.io/en/latest/index.html


4
Design

Autopilot distributes experiments across a network of Raspberry
Pis,1 a type of inexpensive single-board computer. 1 Raspberry Pi model 4B, see Table 5.2

Autopilot has three primary design principles:

1. Efficiency - Autopilot should minimize computational overhead and maximize
use of hardware resources.

2. Flexibility - Autopilot should be transparent in all its operations so that users
can expand it to fit their existing or desired use-cases. Autopilot should provide
clear points of modification and expansion to reduce local duplication of labor
to compensate for its limitations.

3. Reproducibility - Autopilot should maximize system transparency and mini-
mize the potential for the black-box of local reprogramming. Autopilot should
maximize the information it stores about its operation as part of normal data
collection.

4.1 Efficiency

Though it is a single board, the Raspberry Pi operates more like a computer than a
microcontroller. It most commonly runs a custom Linux distribution, Raspbian,
allowing Autopilot to use Python across the whole system. Using an interpreted
language like Python running on Linux has inherent performance drawbacks com-
pared to compiled languages running on embedded microprocessors. In practice
these drawbacks are less profound than they appear on paper: Python’s overhead is
negligible on modern processors2, jitter and performance can be improved by wrap- 2 and improvements to CPython in Python 3.11

and onwards will bring overhead close to zero[178]ping compiled code, etc. While we view the gain in accessibility and extensibility
of a widely used high-level language like Python as outweighing potential perfor-
mance gains from using a compiled language, Autopilot is nevertheless designed to
maximize computational efficiency.

4.1.1 Concurrency

time

cpu0

wait for poke

deliver water

plot result

Figure 4.1: A single-threaded program executes all
operations sequentially, using a single process and
cpu core.

Most behavioral software is single-threaded (Figure 4.1), meaning the program will
only perform a single operation at a time. If the program is busy or waiting for an
input, other operations are blocked until it is finished.

Autopilot distributes computation across multiple processes and threads to take ad-
vantage of the Raspberry Pi’s four CPU cores. Most operations in Autopilot are
executed in threads. Specifically, Autopilot spawns separate threads to process mes-
sages and events, an architecture described more fully in section 5.8. Threading does
not offer true concurrency3, but does allow Python to distribute computational 3 See David Beazley’s ‘Understanding the Global

Interpreter Lock’ and associated visualizations.

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://docs.python.org/3.11/whatsnew/3.11.html#faster-cpython
http://www.dabeaz.com/python/UnderstandingGIL.pdf
http://www.dabeaz.com/python/UnderstandingGIL.pdf
http://www.dabeaz.com/GIL/gilvis/index.html
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time between operations so that, for example, waiting for an event does not block
the rest of the program, and events are not missed because the program is busy (Fig-
ure 4.2).

time

cpu0

wait for poke

plot result

compute next stage

deliver water

waiting

Figure 4.2: A multi-threaded program divides
computation time of a single process and cpu core
across multiple operations so that, for example,
waiting for input doesn’t block other operations.

Critical operations that are computationally intensive or cannot be interrupted are
given their own dedicatedprocesses. Linux allows individual cores of a processor to
be reserved for single processes, so individual Raspberry Pis are capable of running
four truly parallel processing streams. For example, all Raspberry Pis in an Autopilot
swarm create a messaging client to handle communication between devices which
runs on its own processor core so no messages are missed. Similarly, if an experiment
requires sound delivery, a realtime sound engine in a separate process (Figure 4.3)
also runs on its own core.

time

cpu1 play sound

cpu2 process messages

Figure 4.3: A multi-process program is truly
concurrent, allowing multiple cpu cores to operate
in parallel.

Since even moderately complex experiments can consume more resources than are
available on a single processor, the topmost layer of concurrency in Autopilot is
to use additional computers. Autopilot uses the Raspberry Pi as a low-cost hard-
ware controller, but only its GPIO control system is unique to them: the rest of the
code can be used on any type of computer, so computationally expensive or GPU-
intensive operations can be offloaded to any number of high performance machines.
Computers divide labor autonomously (see 4.2.4 and 5.7 ), so for example one com-
puter running a task can send and receive messages from another running the GUI
and plots, but does not depend on that input as it would in a system that couples
a microcontroller with a managing computer. The ability to coordinate multiple,
autonomous computers with heterogeneous responsibilities and capabilities in a
shared task is Autopilot’s definitive design decision.

4.1.2 Leveraging Low-Level Libraries

Table 4.1: A few libraries Autopilot uses

jack realtime audio
pigpio GPIO control

ZeroMQ networking
Qt GUI

Autopilot uses Python as a “glue” language, where it wraps and coordinates faster
low-level compiled code[179]. Performance-critical components of Autopilot are
thin wrappers around fast C libraries (Table 4.1). As Autopilot’s API matures, we
intend to replace any performance-limiting Python code like its sound server and
networking operations with compiled code exposed to python with tools like the C
Foreign Function Interface (CFFI).

Since Autopilot coordinates its low-level components in parallel rather putting ev-
erything inside one “main loop,” Autopilot actually has better temporal resolution
than single-threaded systems like Bpod or pyControl, despite the realtime nature of
their dedicated processors (Table 4.2).

Table 4.2: Using pigpio as a dedicated I/O process
gives autopilot greater measurement precision

Precision

Autopilot (pigpio) 5µs
Bpod 100µs

pyControl 1000µs
4.1.3 Caching

Finite-state machines are only aware of the current state and the events that transi-
tion it to future states. They are thus incapable of exploiting the often predictable
structure of behavioral tasks to precompute future states and precache stimuli. Fur-
ther, to change task parameters between trials (eg. changing the rewarded side in
a two-alternative forced-choice task), state machines need to be fully reconstructed
and reuploaded to the device that runs them each time.

Autopilot precomputes and caches as much as possible. Rather than wait “inside” a
state, Autopilot prepares each of the next possible events and saves them for imme-
diate execution when the appropriate trigger is received. Static stimuli are prepared

http://jackaudio.org/
http://abyz.me.uk/rpi/pigpio/index.html
http://zeromq.org/
https://www.qt.io/
https://cffi.readthedocs.io/en/latest/index.html
http://abyz.me.uk/rpi/pigpio/pigpiod.html
https://github.com/sanworks/Bpod_StateMachine_Firmware/blob/059d1e9195f5bb7d0d5cd7b33f56342eb5a3a55c/Dev/StateMachineFirmware/StateMachineFirmware.ino#L196
https://github.com/pyControl/code/blob/28cf5ea28ca2764aeea829eba148adfa5239254a/pyControl/framework.py#L228
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once at the beginning of a behavioral session and stored in memory. Before their
presentation, they are buffered to minimize latency.

By providing full low-level documentation, we let researchers choose the balance
between ease of use and performance themselves: it’s possible to just call a sound’s
play() method, explicitly buffer it with its buffer() method, or generate samples
on the fly with its play_continuous()method. Similarly, messages can be sent with
a networking node’s send() method, or prepared beforehand by explicitly making
a Message and calling its serialize() method.

Autopilot’s efficient design lets it access the best of both worlds—the speed and re-
sponsiveness of compiled code on dedicated microprocessors and the accessibility
and flexibility of interpreted code.

4.2 Flexibility

4.2.1 Single-language

Behavior software that uses dedicated microprocessors must have some routine for
compiling the high-level abstraction of the experiment into machine code. This
gives those systems a theoretical advantage in processing speed, but the compiler
becomes the bottleneck of complexity: only those things that can be compiled can
be included in the experiment. This may in part contribute to the ubiquity of state-
machine formalisms in behavior software.

Because Python is used throughout the system, extending Autopilot’s functionality
is straightforward. Task design (see section 5.3) is effectively arbitrary—anything
that can be expressed in Python is a valid task. This also allows Autopilot to easily
be extended to make use of external libraries (eg. our integration with DeepLabCut-
Live[180] and our planned integration with OpenEphys).

4.2.2 Modularity

Although Autopilot deeply integrates with the Raspberry Pi’s hardware, we have
also worked to make its components modular. There is a tension between provid-
ing a full-featured behavioral system and the flexibility of its components — as ad-
ditional features are added to a system, they can constrain the functionality of ex-
isting components that they rely on. To address this tension, we have continuously
worked to decouple Autopilot into subcomponents with clear inheritance hierar-
chies and APIs that can used quasi-independently.

Modularity has 3 primary advantages:

1. Modularitymakes code more flexible by reducing the constraints imposed by
._.unstructured code interdependencies

2. Modularity makes code more intelligible by logically distributing tasks to
._. *-* ^ ^ =.=discrete classes

3. Modularity reduces effort-duplication by allowing multiple, similar classes
._. ._. ._. ._.to be created with inheritance rather than copying and pasting.

https://docs.auto-pi-lot.com/en/latest/stim/sound/base.html#autopilot.stim.sound.base.Jack_Sound.play
https://docs.auto-pi-lot.com/en/latest/stim/sound/base.html#autopilot.stim.sound.base.Jack_Sound.buffer
https://docs.auto-pi-lot.com/en/latest/stim/sound/base.html#autopilot.stim.sound.base.Jack_Sound.play_continuous
https://docs.auto-pi-lot.com/en/latest/networking/node.html#autopilot.networking.node.Net_Node.send
https://docs.auto-pi-lot.com/en/latest/networking/message.html#autopilot.networking.message.Message
https://docs.auto-pi-lot.com/en/latest/networking/message.html#autopilot.networking.message.Message.serialize
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There is no such thing as “incompatible hardware” with Autopilot because the classes
that control hardware are independent from the code that provides other core func-
tionality. In systems without modular design, hardware implementation is spread
across the codebase. For example to add a new type of hardware output to a Bpod
system, one would need to write new firmware for it in C (eg. the valve driver mod-
ule), modify Bpod’s existing firmware, hunt through the code to modify how states
are added and state machines are assembled, add its controls explicitly to the GUI,
and so on.

Tasks specify what type of hardware is needed to run them, but are agnostic about
the way the hardware is implemented, making their descriptions more portable. Tasks
that have the same structure but differ in hardware (eg. a freely moving two-alternative
forced choice task in which a mouse visits several IR sensors, or a head-fixed two-
alternative forced choice task in which a mouse runs on a wheel to indicate its choice)
can be implemented by a trivial subclass that modifies the hardware description
rather than completely rewriting the task.

4.2.3 Plugins & Code Transparency

We call Autopilot a software framework because in addition to providing classes
and methods to run experiments out of the box, it also provides explicit structure
that scaffolds any additional code that is needed by the user. Our goal is to clearly
articulate in the documentation how modules should interact so that anyone can
write code that works on any apparatus.

As groupware intended to be used differently by lab members with different respon-
sibilities, Autopilot is designed for users with a range of programming expertise,
from those who only want to interact with a GUI, to those who wish to fundamen-
tally rewrite core operations for their particular experiment. As such, it is extensively
documented: this paper provides a high-level introduction to its design and struc-
ture, its user guide describes how to use the program and provides examples, and
its API-level documentation describes in granular detail how the program actually
works4. Nothing is “off-limits” to the user—there isn’t any hidden, undocumented 4 The user guide and API documentation are

available at docs.auto-pi-lot.comhardware code behind the curtain5. We want users to be able to understand how
5 For readability of the docs, we omit generating
HTML documentation for some private methods
and functions, but they are documented in the
source and their function is made clear from their
context and the documentation of public methods.

and why everything works the way it does so that Autopilot can be adapted and
expanded to any use-case.

A broader goal of Autopilot is to build a library of flexible task prototypes that can
be tweaked and adapted, hopefully reducing the number of times the wheel is rein-
vented. We have attempted to nudge users to write reusable tasks by designing Au-
topilot such that rather than writing tasks as local unstructured scripts, they use its
plugin system that scaffolds development by extending any of its basic types. Plug-
ins are registered using a form in the Autopilot Wiki which makes them available to
anyone while also embedding them in a semantically annotated information system
that allows giving explicit credit to contributors, programmatically linking to any
derivative publications that use the plugin, and further documentation of any tasks,
hardware, or other extensions included within the plugin. Inheriting from parent
classes give plugins structure and a set of basic features6 while also being maximally 6 Like inheriting from the GPIO class gives GPIO

plugins a systematic means of interacting with the
underlying pigpiod daemon.

permissive — anything can be overridden and modified.

https://github.com/sanworks/Bpod_ValveDriver_Firmware
https://github.com/sanworks/Bpod_ValveDriver_Firmware
https://github.com/sanworks/Bpod_StateMachine_Firmware/blob/v22/Preconfigured/StateMachine-Bpod2_0/StateMachine-Bpod2_0.ino
https://github.com/sanworks/Bpod_Gen2/blob/71f3a256b68926b65eae71e10fd747bd28e7ba7d/Functions/State%20Machine%20Assembler/AddState.m#L170
https://github.com/sanworks/Bpod_Gen2/blob/71f3a256b68926b65eae71e10fd747bd28e7ba7d/Functions/State%20Machine%20Assembler/AddState.m#L170
https://github.com/sanworks/Bpod_Gen2/blob/71f3a256b68926b65eae71e10fd747bd28e7ba7d/Functions/%40BpodObject/SetupStateMachine.m#L123
https://github.com/sanworks/Bpod_Gen2/blob/71f3a256b68926b65eae71e10fd747bd28e7ba7d/Functions/Override%20Panels/StateMachinePanel_2_0_0.m
docs.auto-pi-lot.com
https://wiki.auto-pi-lot.com/index.php/Autopilot_Plugins
https://wiki.auto-pi-lot.com/index.php/Autopilot_Plugins
https://docs.auto-pi-lot.com/en/latest/hardware/gpio.html#autopilot.hardware.gpio.GPIO
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4.2.4 Message Handling

Modular software needs a well-defined protocol to communicate between modules,
and Autopilot’s is heavily influenced by the concurrency philosophy7 of ZeroMQ[181].7 “ZeroMQ [...] has a subversive effect on how you

develop network-capable applications. [...] message
processing rapidly becomes the central loop, and
your application soon breaks down into a set of
message processing tasks.”

“If there’s one lesson we’ve learned from 30+
years of concurrent programming, it is: just don’t
share state.”

-The ZeroMQ Guide

All communication between computers and modules happens with ZeroMQ mes-
sages, and handling those messages is the main way that Autopilot handles events. A
key design principle is that Autopilot components should not “share state”—they
can communicate, but they are not dependent on one another. While this may seem
like a trivial detail, having networking and message-handling at its core has three ad-
vantages that make Autopilot a fundamental departure from previous behavioral
software.

First, new software modules can be added to any system by simply dropping in a
standalone networking object. There is no need to dramatically reorganize existing
code to make room for new functionality. Instead new modules can receive, pro-
cess, and send information by just connecting to another module in the swarm. For
example, each plot opens a network connection to stream incoming task data inde-
pendently from the stream that is saving the data.

Second, Autopilot can be made to interact with other software libraries that use
ZeroMQ. For example, The OpenEphys GUI for electrophysiology can send and
receive ZMQ messages to execute actions such as starting or stopping recordings.
Interaction with other software is also useful in the case that some expensive com-
putation needs to happen mid-task. For example, one could send frames captured
from a video camera on a Raspberry Pi to a GPU computing cluster for tracking
the position of the animal. Since ZeroMQ messages are just TCP packets it is also
possible to communicate over the internet for remote control or to communicate
with a data server.

Third, making every component network-capable allows tasks to be distributed over
multiple Raspberry Pis. Chaining multiple Pis distributes the computational load,
allowing, for example, one Raspberry Pi to record and process video while another
runs a sound server and delivers rewards. Autopilot expands with the complexity
of your task, simultaneously eliminating limitations on quantity of hardware pe-
ripherals while ensuring latency is minimal. More interestingly, distributing tasks
allows the arbitrary construction of what we call “behavioral topologies,” which we
describe in section 5.7.1.

4.3 Reproducibility

We take a broad view on reproducibility: including not only the ability to share data
and recreate experiments, but also integrating into a broader ecosystem of tools that
reduces labor duplication and encourages sharing and organizing technical knowl-
edge. For us, reproducibility means building a set of tools that make every experi-
ment and every technique available to anyone, anywhere.

4.3.1 Standardized task descriptions
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Figure 4.4: “Minor” details have major effects.
Proportion of mice (each point, n=4) that were
successful learning the first stage of the speech task
described in [4] across 10 behavior boxes with
variable reward sizes. A 2µL difference in reward
size had a surprisingly large effect on success rate.

The implementation and fine details of a behavioral experiment matter. Seemingly
trivial details like milliseconds of delay between trial phases and microliters of re-
ward volume can be the difference between a successful and unsuccessful task (Fig-

http://zguide.zeromq.org/
https://open-ephys.atlassian.net/wiki/spaces/OEW/pages/23265310/Network+Events
https://open-ephys.atlassian.net/wiki/spaces/OEW/pages/23265310/Network+Events
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ure 4.4). Reporting those details can thus be the difference between a reproducible
and unreproducible result. Researchers also often use “auxiliary” logic in tasks—
such as methods for correcting response bias—that are never completely neutral for
the interpretation of results. These too can be easily omitted due to brevity or mem-
ory in plain-English descriptions of a task, such as those found in Methods sections.
Even if all details of an experiment were faithfully reported, the balkanization of be-
havioral software into systems peculiar to each lab (or even to individuals within
a lab) makes actually performing a replication of a behavior result expensive and
technically challenging. Widespread use of experimental tools that are not explic-
itly designed to preserve every detail of their operation presents a formidable barrier
to rigorous and reproducible science[163].

{
"step_name" : "tone_discrim",
"task_type" : "2AFC",
"bias_mode" : 0,
"punish_sound" : false,
"stim" : {
"sounds" : {
"L": {
"duration" : 100,
"frequency" : 10000,
"type" : "tone",
"amplitude" : 0.01},

"R": {"...":"..."}}},
"reward": {
"type" : "volume",
"volume" : 20},

"graduation" : {
"type" : "accuracy",
"threshold" : 0.75,
"window" : 400},

}

Figure 4.5: Task parameters are stored as portable
JSON, formatting has been abbreviated for clarity.

Autopilot splits experiments into a) the code that runs the experiment, which is
intended to be standardized and shared across implementations, and b) the param-
eters (Figure 4.5) that define your particular experiment and system configuration.
For example, two-alternative forced choice tasks have a shared structure regardless
of the stimulus modality, but only your task plays pitch-shifted national anthems.
This division of labor, combined with Autopilot’s structured plugin system, help
avoid the ubiquitous problem of rig-specific code and hard-coded variables making
experimental code only useful on the single rig it was designed for — enabling the
possibility of a shared library of tasks as described in section 4.2.3

The practice of reporting exactly the parameter description used by the software to
run the experiment removes any chance for incompleteness in reporting. Because all
task parameters are included in the produced data files, tasks are fully portable and
can be reimplemented exactly by anyone that has comparable hardware to yours.

4.3.2 Self-Documenting Data

root
    current_task
    data
        task_name
            S00_free_water
                trial_data
            S01_tone_discrim
                trial_data
    history
        git_hashes
        parameter_history
        past_protocols
            old_task
        weights
    info
        animal_id
        birth_date
        genotype
        etc_additional_info
Figure 4.6: Example data structure. All
information necessary to reconstruct an
experiment is automatically stored in a
human-readable HDF5 file.

A major goal of the open science movement is to normalize publishing well doc-
umented and clearly formatted data alongside every paper. Typically, data are ac-
quired and stored in formats that are lab-idiosyncratic or ad-hoc, which, over time,
sprout entire software libraries needed just to clean and analyze it. Idiosyncratic
data formats hinder collaboration within and between labs as the same cleaning and
analysis operations gain multiple, mututally incompatible implementations, dupli-
cating labor and multiplying opportunities for difficult to diagnose bugs. Over time
these data formats and their associated analysis libraries can mutate and become
incompatible with prior versions, rendering years of work inaccessible or uninter-
pretable. In one worst-case scenario, the cleaning process unearths some critically
missing information about the experiment, requiring awkward caveats in the Meth-
ods section or months of extra work redoing it. In another, the missing information
or bugs in analysis code are never discovered, polluting scientific literature with in-
accuracies.

The best way to make data publishable is to avoid cleaning data altogether anddesign
good data hygiene practices into the data acquisition process. Autopilot automatically
stores all the information required to fully reconstruct an experiment, including any
changes in task parameters or code version that happen throughout training as the
task is refined.

Autopilot data is stored in HDF5 files, a hierarchical, high-performance file format.
HDF5 files support metadata throughout the file hierarchy, allowing annotations

https://support.hdfgroup.org/HDF5/whatishdf5.html
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to natively accompany data. Because HDF5 files can store nearly all commonly used
data types, data from all collection modalities—trialwise behavioral data, continu-
ous electrophysiological data, imaging data, etc.—can be stored together from the
time of its acquisition. Data is always stored with the full conditions of its collection,
and is ready to analyze and publish immediately (Figure 4.6). No Autopilot-specific
scripts are needed to import data into your analysis tool of choice—anything that
can read HDF5 files can read Autopilot data8. 8 Though our Subject class provides a simplified

interface to access and manipulate Autopilot data
As of v0.5.0, we have built a formal data modeling system into Autopilot, allowing
for unified declaration of data for experimental subjects, task parameters, and re-
sulting data with verifiable typing and human-readable annotations. These abstract
data models can be used with multiple storage interfaces, paving the way for export
to, for example, the Neurodata Without Borders standard[182], further enabling
Autopilot data to be immediately incorporated into existing processing pipelines
(see section 5.2).

4.3.3 Testing & Continuous Integration

Open-source scientific software does away with prior limitations to access and in-
spection imposed by proprietary tools. It also exposes the research process to bugs
in software written by semi-amateurs that can yield errors in the resulting data, anal-
ysis, and interpretation[183, 184, 185, 186]. Autopilot tries to bring best practices
in software development to experimental software, including a set of automated
tests for continuous integration.

We are still formalizing our contribution process, and our tests are still far from
achieving full coverage9, but we currently require tests and documentation for all

9 Coverage statistics for Autopilot are available on
coveralls.io at https://coveralls.io/github/
auto-pi-lot/autopilot

new code added to the library. Writing good tests is hard, and we are in the process
of building a set of hardware simulators and test fixtures to ease contribution.

Tests are effectively provable statements about how a program functions (Figure
4.7), which are particularly important for a library that aspires to be baseline lab
infrastructure like Autopilot. Tests make it possible to use and contribute to the li-
brary with confidence: all tests are run on every commit, making it possible to deter-
mine if some new contribution breaks existing code without manually reading and
testing every line. As we work to complete our test coverage, we hope to provide
researchers with a tool that they can trust and elevates the verifiability of scientific
results at large.

def test_set_gpio():
"""
The `set` method of a Digital_Out
object sets the pin state
"""
pin = Digital_Out(pin=17)

# Turn GPIO pin on
pin.set(True)
assert pin.state == True

# Turn GPIO pin off
pin.set(False)
assert pin.state == False

Figure 4.7: A test like test_set_gpio is a
provable statement about the functionality of a
program, in this case that “the Digital_Out.set()
method sets the state of a GPIO pin.”

4.3.4 Expense

Autopilot is an order of magnitude less expensive than comparable behavioral sys-
tems (Table 4.3). We think the expense of a system is important for two reasons:
scientific equity and statistical power.

The distribution of scientific funding is highly skewed, with a large proportion of
research funding concentrated in relatively few labs[187]. Lower research costs ben-
efit all scientists, but lower instrumentation costs directly increase the accessibility
of state-of-the-art experiments to labs with less funding. Since well-funded labs also
tend to be concentrated at a few (well-funded) institutions, lower research costs also
broaden the base of scientists outside traditional research institutions that can stay
at the cutting edge[188, 189, 190].

https://coveralls.io/github/auto-pi-lot/autopilot
https://coveralls.io/github/auto-pi-lot/autopilot
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Figure 4.8: When comparing a value across
groups, eg. a genetic knockout vs. wildtype, even a
modest intra-animal (or, more generally,
intra-cluster) correlation (ICC) causes the false
positive rate to be far above the nominal α = 0.05.
Shown are false positive rates for simulated data
with various numbers of “cells” recorded for
comparisons between two groups of 5 animals each
with a real effect size of 0. We note that 741
simultaneously recorded cells were reported in
[156] and a mean ICC of 0.19 across 18
neuroscientific datasets was reported in [191]

Neuroscience also stands to benefit from the lessons learned from the replication
crisis in Psychology[192]. In neuroscience, underpowered experiments are the rule,
rather than the exception[193]. Statistical power in neuroscience is arguably even
worse than it appears, because large numbers of observations (eg. neural recordings)
from a small number of animals are typically pooled, ignoring the nested structure
of observations collected within individual animals. Increasing the number of cells
recorded from a small number of animals dramatically increases the likelihood of
Type I errors (Figure 4.8)—indeed, for values of within-animal correlation typical
of neuroscientific data, high numbers of observations make Type I errors more likely
than not[191]. For this reason, perhaps paradoxically, recent technical advances
in multiphoton imaging and silicon-probe recordings will actually make statistical
rigor in neuroscience worse if we don’t use analyses that account for the multilevel
structure of the data and correspondingly record from the increased number of an-
imals that they require.

Although the expense of multi-photon imaging and high-density electrophysiology
will always impose an experimental bottleneck, behavioral training time is often the
greater determinant of study sample size. Typical behavioral experiments require
daily training sessions often carried out over weeks and months, while far fewer imag-
ing or electrophysiology sessions are carried out per animal. Training large cohorts
of animals in parallel is thus the necessary basis of a well-powered imaging or elec-
trophysiology experiment.

Autopilot pyControl Bpod

Behavior CPU $45 $270 $925
Nosepoke (3x) $216 $369 $810
Total for One $261 $639 $1735

Five Systems $1305 $3195 $8675
Host CPU(s) $1000 $1000 $5000
Total for Five $2305 $4195 $13625

Total for Ten $3610 $8390 $27350

Table 4.3: Cost for Basic 2AFC System
“Nosepoke” includes a solenoid valve, IR sensor,
water tube, LED, housing, and any necessary driver
PCBs. For PyControl and Autopilot, we included
the cost of one Lee LHDA0531115H solenoid
valve per nosepoke ($63.35). For PyControl, we
estimated a typical USB hub with 5 ports to control
5 pyControl systems from one computer. We note
that the Bpod and PyControl systems both include
cost of assembly for the control CPUs and
nosepokes, but also that Autopilot does not require
assembly for its control CPU and its default
nosepoke is a snap-together 3D printed part and
PCB without surface mounted components that
can be assembled by an amateur in roughly half an
hour.

https://www.adafruit.com/product/4292
https://open-ephys.org/pycontrol/pycontrol
https://sanworks.io/shop/viewproduct?productID=1024
http://www.open-ephys.org/store/pycontrol-peripherals
https://sanworks.io/shop/viewproduct?productID=1009
https://wiki.auto-pi-lot.com/index.php/Lee_LHDA0531115H
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Figure 5.1: Overview of major Autopilot
componentsAutopilot consists of software and hardware modules

configured to create a behavioral topology. Independent agents linked by flexible
networking objects fill different roles within a topology, such as hosting the user
interface, controlling hardware, transforming incoming and outgoing data, or de-
livering stimuli. This infrastructure is ultimately organized to perform a behavioral
task.

5.1 Directory Structure

On setup, Autopilot creates a user directory that contains all local files that define
its operation (Figure 5.2). The subdirectories include:

./autopilot
├── calibration
├── data
│ ├── subject_1.h5
│ └── subject_2.h5
├── launch_autopilot.sh
├── logs
│ ├── core.terminal.log
│ └── plugins.my_plugin.log
├── pilot_db.json
├── plugins
│ └── my_plugin
│ └── my_task.py
├── prefs.json
├── protocols
│ ├── 2afc_easy.json
│ └── 2afc_hard.json
└── sounds

Figure 5.2: Example user directory structure,
typically in ∼/autopilot.

• calibration — Calibration for hardware objects like audio or solenoids that,
for example, map opening durations to volumes of liquids dispensed

• data — Data for experimental subjects

• launch_autopilot.sh — Launch script that includes launching external pro-
cessed like the jack audio daemon (will be removed and integrated into a more
formal agent structure in future versions)

• logs — Every Autopilot object is capable of full debug logging, neatly format-
ted by object type and instance ID and grouped within module-level logging files.
Logs are both written to disk, and output to stderr using the rich logging han-
dler for clean and readable inspection during program operation (Figure 5.3).

https://rich.readthedocs.io/en/latest/reference/logging.html#logging
https://rich.readthedocs.io/en/latest/reference/logging.html#logging
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Logs can be parsed back into python objects to make it straightforward to diag-
nose problems or recover data in the case of an error.

Figure 5.3: Logs printed to stderr are formatted
and colorized by the rich logging handler. Logfiles
are created by module, and log entries are identified
by the individual objects instantiated from them.
Logfiles are rotated and size-limited for
configurable backups.

• pilot_db.json — A .json file that stores information about associated Pilots,
including the contents of their prefs files, which hash/version of Autopilot they
are running, and any Subjects that are associated with them.

• plugins — Plugins, which are any Python files that contain subclasses of Au-
topilot objects, that are automatically made available by Autopilot’s registry sys-
tem (eg. autopilot.get('hardware', 'My_Hardware') would retrieve a cus-
tom hardware object). Plugins can be documented and made available to other
Autopilot users by registering them on the wiki

• prefs.json — Configuration options for this particular Autopilot instance, in-
cluding configurations of local hardware objects, audio output, etc. In the future
this will likely be broken into multiple files for different kinds of preferences1. 1 with care for backwards compatibility

• protocols — Protocols, which consist of parameterizations of individual Tasks
as well as criteria for graduating betwewen them. These are also stored in indi-
vidual subject data files, and updated whenever the source protocol files change.

• sounds — Any sound files that are requested by the File sound class.

5.2 Data

As of v0.5.0, Autopilot uses pydantic to create explicitly typed and schematized
data models. Submodules include data abstract modeling tools that define base
model types like Tables, Groups, and sets of Attributes. These base modeling
classes are then built into a few core data models like subject Biography informa-
tion, Protocol declaration, and the Subject data model itself that combines them.
Modeling classes then have multiple interfaces that can be used to create equiva-
lent objects in other formats, like pytables for hdf5 storage, pandas dataframes for
analysis, or exported to Neurodata Without Borders.

https://rich.readthedocs.io/en/latest/reference/logging.html#logging
https://docs.auto-pi-lot.com/en/latest/utils/registry.html
https://wiki.auto-pi-lot.com/index.php/Autopilot_Plugins
https://docs.auto-pi-lot.com/en/latest/stim/sound/sounds.html#autopilot.stim.sound.sounds.File
https://pydantic-docs.helpmanual.io/
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For example, consider a simplified version of the Biography model:
Listing 1: data - Biography

1 from autopilot.data.modeling import Data, Attributes, Field
2 from typing import Optional, Union
3 from datetime import datetime, timedelta
4

5 class Enclosure(Data):
6 """Where does the subject work?"""
7 box: Optional[Union[str, int]] = Field(
8 default=None,
9 description="The box this Subject is run in")

10 room: Optional[Union[str, int]] = Field(
11 default=None,
12 description="The room number that the animal is run in")
13

14 class Biography(Attributes):
15 """Biography of an Experimental Subject"""
16 id: str = Field(...
17 description="The indentifying name of this subject.")
18 dob: datetime = Field(...
19 description="The Subject's date of birth")
20 enclosure: Optional[Enclosure] = None
21

22 @property
23 def age(self) -> timedelta:
24 """Difference between now and :attr:`.dob`"""
25 return datetime.now() - self.dob

Data models use builtin Python type hints. Type
hints are colon delimited annotations like x:int that
indicate the type (integer, string, etc.) of the variable.
Though typically Python does not, Pydantic both vali-
dates that a type matches its hint and coerces it to the
correct type if possible.

The Union type means that a field can be one of sev-
eral possible types, in this case the box can be identi-
fied with either a string or integer.
Optional fields can have default fields, either a single
value like None or a function that computes a default
value like the current date.

Descriptions are stored in the data model schema to
make shared data self-documenting, and also used by
GUI widgets for tooltips that clarify what fields mean.

The class that our model inherits from indicates how
Autopilot should treat it in a given storage interface.
For HDF5 files, subclasses of the Attributes class are
stored as node metadata, while subclasses of Table
make tables.
Autopilot’s format interfaces define mappings from
nonstandard types to types supported by the format.
For HDF5 files, datetime objects are converted to ISO
8601 formatted strings
Data models can be recursive, or use other models as
types for their own fields. In this case the subject’s
Enclosure can be optionally specified in its Biography.
Properties are model fields that are automatically com-
puted based on the values of other fields. The age of
the animal can be accessed like a normal instance at-
tribute that returns a timedelta object.

A new subject could then be created with a biography like this, storing it in the
HDF5 file and made accessible through the Subject interface:

Listing 2: data - New Subject
1 from autopilot.data import Subject
2 from autopilot.data.models import Biography, Enclosure
3 bio = Biography(
4 id="my_subject",
5 dob="2022-01-01T00:00:00",
6 enclosure=Enclosure(box=100, room="Building 200")
7 )
8 sub = Subject.new(bio)
9 assert sub.info == bio

The Subject class is the primary means by which Au-
topilot stores, organizes, and interacts with data.

Several basic models are built into Autopilot, and in
future versions it will be possible to extend and re-
place these models with plugins, making storage for-
mats fully customizable while still being explicit and
understandable.

If we don’t give the type specified in the model, it
will try and coerce it to the correct type and raise an
error if it can’t.

An assertion declares that some logical statement
is True and raises an exception if it isn’t. Autopi-
lot’s unit tests ensure that subject data can be stored
and retrieved without losing information or changing
types.

https://docs.python.org/3/library/typing.html
https://docs.python.org/3/library/typing.html
https://docs.python.org/3/library/datetime.html#datetime-objects
https://docs.python.org/3/library/datetime.html#timedelta-objects
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The models are declared using a combination of python type hints and Field ob-
jects that provide defaults and descriptions. Because these models can be recursive,
as in the case of using the Enclosure model as a type within the Biography model,
we can build expressive, flexible, but still strict representations of complex data.

Out of the box, pydantic models can create explicit and interoperable schemas in
JSON Schema and OpenAPI formats, and Autopilot extends them with additional
interfaces and representations. Autopilot can create a GUI form for filling in fields
for models, for example, to create a new Subject or declare parameters for a task
(Figure 5.4). Attribute models that consist of scalar key-value pairs can be reliably
stored and retrieved from metadata attribute sets in HDF5 groups, but Autopilot
knows that Table models should be created as HDF5 tables as they will have mul-
tiple values for each field. An additional Trial_Data class that inherits from Table
can be exported to NWB trial data, and the Subject.get_trial_data method uses
the model to load trial data and convert it to a correctly typed pandas[194] DataFrame.

Figure 5.4: An Autopilot Data model can
automatically generate a GUI form to fill in its
properties, in this example to define a new
experimental Subject’s biography.

Though the data modeling system is new in v0.5.02, we have laid the groundwork

2 Released as an alpha version at the time of writing

for Autopilot’s plugin system to allow researchers to declare custom schema for all
data produced by Autopilot, and to preserve both interoperability and reproducibil-
ity by combining them with datasets potentially produced by multiple incompatible
tools (see Section 7.4).

5.3 Tasks

task_0

stages

protocol

g
r
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d
u
a
t
i
o
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task_1

Figure 5.5: Protocols consist of one or multiple
tasks, tasks consist of one or multiple stages.
Completion of all of a task’s stages constitutes a
trial, and meeting some graduation criterion like
accuracy progresses a subject between tasks.

Behavioral experiments in Autopilot are centered around tasks. Tasks are Python
classes that describe the parameters, coordinate the hardware, and perform the logic
of the experiment. Tasks may consist of one or multiple stages like a stimulus pre-
sentation or response event, completion of which constitutes a trial (Figure 5.5).
Stages are analogous to states in the finite state machine formalism.

Multiple tasks are combined to make protocols, in which animals move between
tasks according to “graduation” criteria like accuracy or number of trials. Training
an animal to perform a task typically requires some period of shaping where they
are familiarized to the apparatus and the structure of the task. For example, to teach
animals about the availability of water from “nosepoke” sensors, we typically begin
with a “free water” task that simply gives them water for poking their nose in them.
Having a structured protocol system prevents shaping from relying on intuition or
ad hoc criteria.

5.3.1 Task Components

The following is a basic two-alternative choice (2AFC) task—a sound is played and
an animal is rewarded for poking its nose in a designated target nosepoke. While
simple, it is included here in full to show how one can program a task, including an
explicit data and plotting structure, in roughly 60 lines of generously spaced Python.

https://pydantic-docs.helpmanual.io/usage/schema/
https://json-schema.org/draft/2020-12/json-schema-core.html
https://github.com/OAI/OpenAPI-Specification
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Every task begins by describing four elements:

1) the task’s parameters, 2) the data that will be collected, 3) how to plot the data,
and 4) the hardware that is needed to run the task.

Listing 3: task - parameters
1 class Nafc(Task):
2 class Params(Task_Params):
3 stim: Sounds = Field(...,
4 description = "Sound Stimuli")
5 reward: units.mL = Field(...,
6 description = "Reward Volume (mL)"
7 )
8

9 class TrialData(Trial_Data):
10 target: Side = Field(...,
11 description="Side (L, R) of the correct response")
12 correct: bool = Field(...,
13 description="Response matched target")
14

15 PLOT = {}
16 PLOT['data'] = {'target' : 'point',
17 'correct' : 'rollmean'},
18 # n trials to roll window over
19 PLOT['params'] = {'roll_window' : 50}
20

21 HARDWARE = {
22 'POKES':{
23 'L': 'Digital_In',
24 'R': 'Digital_In'
25 },
26 'PORTS':{
27 'C': 'Solenoid',
28 }
29 }

1) A Task_Params model defines what param-
eters are needed to run the task.

We use Field objects as in listing 1, and
can also use some special types like Sounds
to declare complex parameters

units work like numbers but avoid ambiguity,
so eg. the Solenoid class below knows this is
a volume, rather than a duration

2) A Trial_Data model defines what data
will be returned from the task.

3) A PLOT dictionary maps the data output
to graphical elements in the GUI. (In fu-
ture versions this will be incorporated into
the Fields of TrialData)

4) A HARDWARE dictionary that describes
what hardware will be needed to run the
task.

The specific implementation of the hard-
ware (eg. where it is connected, how to
interact with it) is independent of the task.
The task just knows about a PORT named
'C' that is a Solenoid.

Created tasks receive some common methods, like input/trigger handling and net-
working, from an inherited metaclass. Python inheritance can also be used to make
small alterations to existing tasks3 rather than rewriting the whole thing. The GUI 3 An example of subclassing a generic ‘Task’ class is

included in Autopilot’s user guidewill use the Params model and the PLOT dictionary to generate forms for parameter-
izing the task within a protocol and display the data as it is collected. The Subject
class will use the TrialData model to create HDF5 tables to store the data, and the
Task metaclass will instantiate the described HARDWARE objects from their system-
specific configuration in the prefs.json file so they are available in the rest of the
class like self.hardware['POKES']['L'].state

https://docs.auto-pi-lot.com/en/latest/examples.html
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5.3.2 StageMethods

The logic of tasks is described in one or a series of methods (stages). The order of
stages can be cyclical, as in this example, or can have arbitrary logic governing the
transition between stages.

Listing 4: task - methods
30 def __init__(self, params:'Nafc.Params'):
31 self.stim_mgr = Stim_Manager(params.stim)
32 self.reward = Reward_Manager(params.reward)
33

34 stage_list = [self.discrim, self.reinforcement]
35 self.stages = itertools.cycle(stage_list)
36

37 self.init_hardware()
38 next(self.stages)()
39

40 def discrim(self):
41 target, wrong, stim = self.stim_mgr.next()
42 self.target = target
43

44 self.triggers[target] = [
45 self.hardware['PORTS']['C'].open,
46 lambda: next(self.stages)()]
47 self.triggers[wrong] = lambda: next(self.stages)()
48

49 self.node.send('DATA', {'target':target})
50

51 stim.play()
52

53 def reinforcement(self, response):
54 if response == self.target:
55 self.node.send('DATA', {'correct':True})
56 else:
57 self.node.send('DATA', {'correct':False})
58

59 next(self.stages)()

In Python, def defines new methods. The
__init__ method is called when a new
object is initialized

Managers control stimulus and reward de-
livery, so users can, for example, continu-
ally synthesize new stimuli or implement
adaptive rewards

Stages are combined into an object that (in
this case) continually cycles through them
when its next() method is called.

This starts the task by retrieving the first
stage and then calling it.

The stimulus manager returns which port
will be the target and the sound to be
played.

A sequence of triggers is set: if the target
port is poked, a reward will be delivered
and the next stage will be called. A lambda
function indicates not to call the method
now, but only when triggered.

The task has a networking object that asyn-
chronously streams data back to the user-
facing terminal

In this example, the response port is passed
from the trigger handling function. If it
matches the stored target variable, the ani-
mal answered correctly.

Finally, the task is repeated by calling the
next stage.

Autopilot is not prescriptive about how tasks are written. The same task could have
two separate methods for correct and incorrect answers rather than a single rein-
forcement method, or only a single stage that blocks the program while it waits for
a response.

{
"step_name": "Simple 2AFC",
"stim" : {
"sounds" : {
"L": {
"type" : "tone",
"frequency" : 4000},

"R": {
"type" : "tone",
"frequency" : 8000}

}
},
"reward": 10
}

Figure 5.6: Simplified example of parameters for
the above task

Publishing data from this task requires no additional effort: a hash that uniquely
identifies the code version (as well as any local changes) is automatically stored at
the time of collection, as is a JSON-serialized version of the parameter model (Fig-
ure 5.6). If this task was incorporated into the central task library, anyone using Au-
topilot would be able to exactly replicate the experiment from the published data.
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5.3.3 The limitations of finite state machines

The 2AFC task described above could be easily implemented in a finite-state ma-
chine. However, the difficulty of programming a finite-state machine is subject to
combinatoric explosion with more complex tasks. Specifically, finite-state machines
can’t handle any task that requires any notion of “state history.”

As an example, consider a maze-based task. In this task, the animal has to learn a
particular route through a maze—it is not enough to reach the endpoint, but the
animal has to follow a specific path to reach it (Figure 5.7). The arena is equipped
with an actimeter that detects when the animal enters each area.

a b c

d e f

g h i

good! reward!

bad. no reward :(

Figure 5.7: The subject must reach point i but
only via the correct (green) path.

In Autopilot, we would define a hardware object that logs positions from the actime-
ter with a store_position() method. If the animal has entered the target position
(“i” in this example), a task_trigger() that advances the task stage is called. The
following code is incomplete, but illustrates the principle.

Listing 5: maze - hardware
1 class Actimeter(Hardware):
2 def __init__(self):
3 # ... some code to access the hardware ...
4 self.positions = []
5 self.target_position = "i"
6

7 def store_position(self, position):
8 self.positions.append(position)
9

10 if position == self.target_position:
11 self.finished_cb(self.positions)
12 self.positions = []

See line 18 below

The task follows, with parameters and network methods for sending data omitted
for clarity.

Listing 6: maze - task
13 class Maze(Task):
14 def __init__(self):
15 self.target_path = ['a', 'b', 'e', 'f', 'i']
16

17 self.actimeter = Actimeter()
18 self.actimeter.finished_cb = self.finished
19

20 def finished(self, positions):
21 if positions == self.target_path:
22 self.reward()

The actimeter is given a reference to the
Maze task’s finished() method, which it
calls when the target position is reached

The sequence of positions is compared to
the target_path with ==. If they match,
the subject is rewarded!
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How would such a task be programmed in a finite-state machine formalism? Since
the path matters, each “state” needs to consist of the current position and all the
positions before it. But, since the animal can double back and have arbitrarily many
state transitions before reaching the target corner, this task is impossible to represent
with a finite-state machine, as a full representation would necessitate infinitely many
states (this is one example of the pumping lemma, see [195]).

Even if we dramatically simplify the task by 1) assuming the animal never turns back
and visits a space twice, and 2) only considering paths that are less than or equal to
the length of the correct path, the finite state machine would be as complex as figure
5.8.

While finite-state machines are relatively easy to implement and work well for simple
tasks, they quickly become an impediment to even moderately complex tasks. Even
for 2AFC tasks, many desirable features are difficult to implement with a finite state
machine, such as: (1) graduation to a more difficult task depending on performance
history, (2) adjusting reward volume based on learning rate, (3) selecting or synthe-
sizing upcoming stimuli based on patterns of errors[196], etc.

Some of these problems are avoidable by using extended versions of finite state ma-
chines that allow for extra-state logic, but require additional complexity in the code
running the state machines to accomodate, and with enough exceptions the clean
systematicity that is the primary benefit of finite state machines is lost. Autopilot
attempts to avoid these problems by providing tools to program tasks and describe
them without requiring a specified format, balancing the increased complexity by
scaffolding the broader ecosystem of the experiment like its output data, hardware
control, etc. When possible, we have tried to avoid forcing people to change the way
they think about their work to fit our “little universe”4 and instead try to provide a

4 We take inspiration from Aaron Swartz’ de-
scription of another engineering project, the
Semantic Web, that became too precious about its
formalisms:

“Instead of the “let’s just build something
that works” attitude that made the Web (and the
Internet) such a roaring success [...] they formed
committees to form working groups to write
drafts of ontologies that carefully listed (in 100-
page Word documents) all possible things in the
universe and the various properties they could
have, and they spent hours in Talmudic debates
over whether a washing machine was a kitchen
appliance or a household cleaning device. [...] And
instead of spending time building things, they’ve
convinced people interested in these ideas that the
first thing we need to do is write standards. (To
engineers, this is absurd from the start—standards
are things you write after you’ve got something
working, not before!)”[197]

set of tools that let researchers decide how they want to use them.
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program structure 69

5.4 Hardware

The Raspberry Pi can interface with nearly all common hardware, and has an exten-
sive collection of guides, tutorials, and an active forum to support users implement-
ing new hardware. There is also an enormous amount of existing hardware for the
Raspberry Pi, including sound cards, motor controllers, sensor arrays, ADC/DACs,
and touchscreen displays, largely eliminating the need for a separate ecosystem of
purpose-built hardware (Table 5.1).

Table 5.1: Cost of common peripherals. The
native hardware of the Raspberry Pi, low-level
hardware control of Autopilot, and availability of
inexpensive off-the-shelf components compatible
with the raspi make most custom-built peripherals
unnecessary.

Device Raspi Bpod

HiFiBerry DAC2 Pro $45 $445
ADC $30 $495

I2C $0 $225
Ethernet $0 $285

Rotary Encoder $0 $145

Nosepoke Cap

IR Beam Break Sensor
TT Electronics OPB901L55

5mm RGB LED

Needle Holder

Hex Panel, Tripoke

Tripoke Back Panel

Tripoke PCB

Autopilot Tripoke
Figure 5.9: Two examples of parts with assembly
guides available on the autopilot wiki: A modular
behavior box with magnetic snap-in panels (top),
and a three-nosepoke panel (bottom).

Autopilot controls hardware with an extensible inheritance hierarchy of Python
classes intended to be built into a library of hardware controllers analogously to
tasks. Autopilot uses pigpio to interact with its GPIO pins, giving Autopilot 5µs
measurement precision and enabling protocols that require high precision (such as
Serial, PWM, and I2C) for nearly all of the pins. Currently, Autopilot also has a
family of objects to control cameras (both the Raspberry Pi Camera and high-speed
GENICAM-compliant cameras), i2c-based motion and heat sensors, and USB mice.
In the future we intend to improve performance further by replacing time-critical
hardware operations with low-level interfaces written in Rust.

To organize and make available the vast amount of contextual knowledge needed to
build and use experimental hardware, we have made a densely linked and publicly
editable semantic wiki. The Autopilot wiki contains, among others, reference in-
formation for off-the-shelf parts, schematics for 2D and 3D-printable components,
and guides for building experimental apparatuses and custom parts. The wiki com-
bines unrestrictive freeform editing with structured, computer-readable semantic
properties, and we have defined a collection of schemas for commonly documented
items coupled with submission forms for ease of use. For example, the wiki page
for the Lee Company solenoid we use has fields from a generic Part schema like a
datasheet, price, and voltage, but also that it’s a 3-way, normally-closed solenoid.

The wiki’s blend of structure and freedom breaks apart typically monolithic hard-
ware documentation into a collaborative, multimodal technical knowledge graph.
Autopilot can access the wiki through its API, and we intend to tighten their inte-
gration over time, including automatic configurations for common parts, usage and
longevity benchmarks, detecting mutually incompatible parts, and automatically re-
solving any additional plugins or dependencies needed to use a part.

Raspberry Pi 4B Teensy 3.6 pyboard

CPU Clock 1.5GHz 180MHz 168MHz
CPU Cores 4 1 1

Architecture ARMv8-A, 64-bit ARMv7 32-bit ARMv7 32-bit
RAM Size 2, 4, or 8GB 256KB 192KB

Storage MicroSD (any size) 1024KB 1024KB
GPU Broadcom VideoCore VI — —

GPIO Pins 40 58 29
USB Ports 2x USB 2.0, 2x USB 3.0 2x USB 2.0 1x USB 2.0

Ethernet 1Gbps 100Mbps —
WiFi 2.4/5 GHz b/g/n/ac — —

Camera 15-pin Serial Interface — —
Bluetooth — —

Table 5.2: Specifications of reviewed behavior
hardware. BPod’s state machine uses the Teensy 3.6
microcontroller, and PyControl uses the
Micropython Pyboard.

https://www.raspberrypi.org/help/
https://www.raspberrypi.org/help/
https://elinux.org/RPi_Guides
https://elinux.org/RPi_Tutorials
https://www.raspberrypi.org/forums/
https://www.hifiberry.com/
https://www.adafruit.com/product/2348
https://www.digikey.com/product-detail/en/raspberry-pi/SENSE-HAT/1690-1013-ND/6196429
https://www.seeedstudio.com/Raspberry-Pi-High-Precision-AD-DA-Board-p-2765.html
https://www.digikey.com/product-detail/en/pimoroni-ltd/PIM369/1778-1221-ND/9521981
https://www.hifiberry.com/shop/boards/hifiberry-dac2-pro/
https://sanworks.io/shop/viewproduct?productID=1032
https://thepihut.com/products/high-precision-adc-hat-for-raspberry-pi-10-channel-32-bit
https://sanworks.io/shop/viewproduct?productID=1021
https://sanworks.io/shop/viewproduct?productID=1019
https://sanworks.io/shop/viewproduct?productID=1025
https://sanworks.io/shop/viewproduct?productID=1022
https://wiki.auto-pi-lot.com/index.php/Autopilot_Behavior_Box
https://wiki.auto-pi-lot.com/index.php/Autopilot_Tripoke
http://abyz.me.uk/rpi/pigpio/
https://docs.auto-pi-lot.com/en/latest/hardware/cameras.html#autopilot.hardware.cameras.PiCamera
https://docs.auto-pi-lot.com/en/latest/hardware/cameras.html#autopilot.hardware.cameras.Camera_Spinnaker
https://docs.auto-pi-lot.com/en/latest/hardware/cameras.html#autopilot.hardware.cameras.Camera_Spinnaker
https://docs.auto-pi-lot.com/en/latest/hardware/i2c.html#autopilot.hardware.i2c.I2C_9DOF
https://docs.auto-pi-lot.com/en/latest/hardware/i2c.html#autopilot.hardware.i2c.MLX90640
https://docs.auto-pi-lot.com/en/latest/hardware/usb.html#autopilot.hardware.usb.Wheel
https://wiki.auto-pi-lot.com/index.php/Autopilot_Wiki
https://wiki.auto-pi-lot.com/index.php/Parts
https://wiki.auto-pi-lot.com/index.php/2D_CAD
https://wiki.auto-pi-lot.com/index.php/3D_CAD
https://wiki.auto-pi-lot.com/index.php/Guides
https://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki
https://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki
https://wiki.auto-pi-lot.com/index.php/Special:CategoryTree?target=Hardware&mode=categories&namespaces=&title=Special%3ACategoryTree
https://wiki.auto-pi-lot.com/index.php/Special:Forms
https://wiki.auto-pi-lot.com/index.php/Lee_LHDA0531115H
https://wiki.auto-pi-lot.com/index.php/Category:Part
https://wiki.auto-pi-lot.com/index.php/Category:Solenoid
https://docs.auto-pi-lot.com/en/latest/guide/plugins.html#the-wiki-api
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.pjrc.com/teensy/techspecs.html
https://micropython.org/
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5.5 Transforms

In v0.3.0, we introduced the transform module, a collection of tools for transform-
ing data. The raw data off a sensor is often not in itself useful for performing an
experiment: we want to compare it to some threshold, extract positions of objects
in a video feed, and so on. Transforms are like building blocks, each performing
some simple operation with a standard object structure, and then composed into
a pipeline (Figure 5.10). Pipelines are portable, and can be created on the fly from
a JSON representation of their arguments, so it’s easy to offload expensive opera-
tions to a more capable machine for distributed realtime experimental control (See
[180]).

Transform - DLC Live!
from autopilot import transform as t
# track points on a human body
dlc = t.image.DLC(

model_zoo="full_human")
# select one of the knees
dlc += t.selection.DLCSlice(

select="knee2")
# Test if it's in an ROI
dlc += t.logical.Condition(

minimum=(0,0),
maximum=(128,128))

# Process frames with the pipeline
# set pin High if knee2 in ROI
while True:

pin.set(dlc.process(
cam.q.get()))

Figure 5.10: Transforms can be chained together
(here with the in-place addition operator +=) to
make pipelines that encapsulate the logical
relationship between some input and a desired
output. Here pin is a Digital_Out object, and cam
is a PiCamera with queue enabled.

In addition to computing derived values, we use transforms in a few ways, including

• Bridging Hardware — Different hardware devices use different data types,
units, and scales, so transforms can rescale and convert values to make them com-
patible.

• Integrating External Tools— The number of exciting analytical tools for real-
time experiments keep growing, but in practice they can be hard to use together.
The transform module gives a scaffolding for writing wrappers around other
tools and exposing them to each other in a shared framework, as we did with
DeepLabCut-Live[180], making closed-loop pose tracking available to the rest
of Autopilot’s ecosystem. We don’t need to rally thousands of independent de-
velopers to agree to write their tools in a shared library, instead transforms make
wrapping them easy.

• Extending Objects— Transforms can be used to augment existing objects and
create new ones. For example, a motion sensor uses the spheroid transform to
calibrate its accelerometer, and the gammatone filter5 extends the Noise sound

5 a thin wrapper around scipy’s signal.gammatoneto make a gammatone filtered noise sound.

Like Tasks and Hardware, the transform module provides a scaffolding for writing
reference implementations of algorithms commonly needed for realtime behavioral
experiments. For example, neuroscientists often want to quickly measure a research
subject’s velocity or orientation, which is possible with inexpensive inertial motion
sensors (IMUs), but since anything worth measuring will be swinging the sensor
around with wild abandon the readings first need to be rotated back to a geocentric
coordinate frame. Since the readings from an accelerometer are noisy, we found a
few whitepapers describing using a Kalman filter for fusing the accelerometer and
gyroscope data for a more accurate orientation estimate ([198, 199]), but couldn’t
find an implementation. We wrote one and integrated it into the IMU class (Figure
5.11). Since it’s an independent transform, it’s available to anyone even if they use
nothing else from Autopilot.

Geocentric Velocity
# rotate input in x and y
# by some pitch and roll
reorient = t.geometry.Rotate(

dims='xy')
# select the z axis
reorient += t.selection.Slice(

select=2)
# remove gravity
reorient += t.math.Add(

-9.8)

# using I2C_9DOF...
angle = imu.rotation
z_accel = reorient.process(

imu._acceleration, angle)

Figure 5.11: Using the IMU_Orientation
transform built into the IMU’s rotation property,
a processing chain to reorient the accelerometer
reading and subtract gravity for geocentric z-axis
acceleration.

Transforms were made to be composed, so we broke it into independent sub-operations:
A Kalman filter, rotation, and a spheroid correction to calibrate accelerometers. Then
we combined it with the DLC-Live transform for a fast but accurate motion esti-
mate from position, velocity, and acceleration measurements from three indepen-
dent sensors. Since each step of the transformation is exposed in a clean API, it was
straightforward to extend the Kalman filter to accomodate the the wildly different
sampling rates of the camera and IMU. It’s still got its quirks, but that’s the pur-

https://docs.auto-pi-lot.com/en/latest/hardware/gpio.html#autopilot.hardware.gpio.Digital_Out
https://docs.auto-pi-lot.com/en/latest/hardware/cameras.html#autopilot.hardware.cameras.PiCamera
https://docs.auto-pi-lot.com/en/latest/transform/units.html#autopilot.transform.units.Rescale
https://docs.auto-pi-lot.com/en/latest/hardware/i2c.html#autopilot.hardware.i2c.I2C_9DOF
https://docs.auto-pi-lot.com/en/latest/transform/geometry.html#autopilot.transform.geometry.Spheroid
https://docs.auto-pi-lot.com/en/latest/transform/timeseries.html#autopilot.transform.timeseries.Gammatone
https://docs.auto-pi-lot.com/en/latest/stim/sound/sounds.html#autopilot.stim.sound.sounds.Noise
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.gammatone.html
https://docs.auto-pi-lot.com/en/latest/stim/sound/sounds.html#autopilot.stim.sound.sounds.Gammatone
https://docs.auto-pi-lot.com/en/latest/_modules/autopilot/transform/geometry.html#IMU_Orientation
https://docs.auto-pi-lot.com/en/latest/_modules/autopilot/transform/geometry.html#IMU_Orientation
https://docs.auto-pi-lot.com/en/latest/transform/timeseries.html#autopilot.transform.timeseries.Kalman
https://docs.auto-pi-lot.com/en/latest/transform/geometry.html#autopilot.transform.geometry.Rotate
https://docs.auto-pi-lot.com/en/latest/transform/geometry.html#autopilot.transform.geometry.Spheroid
https://github.com/auto-pi-lot/autopilot-plugin-parallax/blob/759dbb382b90a99f71edf5070772ac18555b67dd/kalman_position.py
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pose of plugins — to make the code available and documented without formally
integrating it in the library.

https://wiki.auto-pi-lot.com/index.php/Plugin:Parallax
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5.6 Stimuli

An Autopilot Tone
my_tone = sounds.Tone(

frequency = 500,
duration = 200)

my_tone.play()

Figure 5.12: Autopilot stimuli are parametrically
defined and inherit all the playback logic that
makes them easy to integrate in tasks

A hardware object would control a speaker, whereas stimulus objects are the individ-
ual sounds that the speaker would play. Like tasks and hardware, Autopilot makes
stimulus generation portable between users, and is released with a family of com-
mon sounds like tones, noises, and sounds from files. The logic of sound presen-
tation is contained in an inherited metaclass, so to program a new stimulus a user
only needs to describe how to generate it from its parameters (Figure 5.12). Sound
stimuli are better developed than visual stimuli as of v0.5.0, but we present a proof-
of-concept visual experiment (Section 6.5) using psychopy[170].

Autopilot controls the realtime audio server jack from an independent Python pro-
cess that dumps samples directly into jack’s buffer (Figure 5.13), giving it a trigger-
to-playback latency very near the theoretical minimum (Section 6.2). Sounds can
be pre-buffered in memory or synthesized on demand to play continuous sounds.
Because the realtime server is independent from the logic of sound synthesis and
storage, stimuli can be controlled independently from different threads without in-
terrupting audio or dropping frames.

sound
server

autopilot

task sound.play()

pigpio

operating
system

trigger
callback

trigger
playback

jack
audio

IR sensor Speaker

buffered
samples

dump to
daemon

Figure 5.13: Our sound server keeps audio
samples buffered until a .play() method is called,
and then dumps them directly into the jack audio
daemon.

We use the Hifiberry Amp 2, a combined sound card and amplifier, which is capa-
ble of 192kHz/24Bit audio playback. Autopilot and Jack can output to any sound
hardware, however, including the builtin audio of the Raspberry Pi if fidelity isn’t
important. There are no external video cards for the Raspberry Pi 4b6, but its em-

6 though the Raspberry Pi compute module has a
PCI lane that supports GPUs.

bedded video card is capable of presenting video and visual stimuli (Section 6.5) es-
pecially if the other computationally demanding parts of the task are distributed to
other Raspberry Pis (Section 5.7.1). If greater video performance is needed, Autopi-
lot is capable of running on typical desktops as well as other single-board computers
with GPUs (as we did with the Nvidia Jetson in [180]).

5.7 Agents

All of Autopilot’s components can be organized into a single system as an “agent,”
the executable that coordinates everyday use. An agent encapsulates:

• Runtime Logic — an initialization routine that starts any needed system pro-
cesses and any subsequent operations that define the behavior of the agent.

• Networking Station — Agents have networking objects called Stations that
are intended to be the “load bearing” networking objects (described more be-
low).

• Callbacks — An action vocabulary that maps different types of messages to
methods for handling them. Called listens to disambiguate from other types
of callbacks.

• Dependencies— Required packages, libraries, and system reconfigurations needed
to operate. Python dependencies are currently defined for agents as groups of op-
tional packages7, and system configuration is done with scripts which shorthand 7 As of v0.5.0, Autopilot is packaged with Poetry,

so they are [tool.poetry.extras] entries within
the pyproject.toml file, installed with pip like
pip install auto-pi-lot[pilot] or poetry like
poetry install -E pilot

common operations like compiling OpenCV with optimizations for the raspi or
enabling a soundcard.

Together, these define an agent’s role in the swarm.

https://www.psychopy.org/
http://jackaudio.org/
https://www.hifiberry.com/shop/boards/hifiberry-amp2/
https://web.archive.org/web/20220506011247/https://www.jeffgeerling.com/blog/2020/external-gpus-and-raspberry-pi-compute-module-4
https://peps.python.org/pep-0621/#dependencies-optional-dependencies
https://peps.python.org/pep-0621/#dependencies-optional-dependencies
https://docs.auto-pi-lot.com/en/latest/setup/scripts.html
https://python-poetry.org
https://github.com/auto-pi-lot/autopilot/blob/90956187d4222f16f67ab8b39b8359da954d5dcc/autopilot/setup/scripts.py#L140-L183
https://github.com/auto-pi-lot/autopilot/blob/90956187d4222f16f67ab8b39b8359da954d5dcc/autopilot/setup/scripts.py#L92-L100
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There are currently two agents in Autopilot:

• Terminal - The user-facing control agent.

• Pilot - A Raspberry Pi that runs tasks, coordinates hardware, and optionally co-
ordinates a set of child Pis.

Terminal agents serve as a root node (see Section 5.8) in an Autopilot swarm. The

Terminal

terminal is the only agent with a GUI, which is used to control its connected pilots
and visualize incoming task data. The terminal also manages data and keeps a reg-
istry of all active experimental subjects. The terminal is intended to make the day-to-
day use of an Autopilot swarm manageable, even for those without programming
experience. The terminal GUI is described further in Section 5.9.

Pilot agents are the workhorses of Autopilot—the agents that run the experiments.

Pilot

Pilots are intended to operate as always-on, continuously running system services.
Pilots make a network connection to a terminal and wait for further instructions.
They maintain the system-level software used for interfacing with the hardware con-
nected to the Raspberry Pi, receive and execute tasks, and continually return data
to the terminal for storage.

Each agent runs autonomously, and so a Pilot can run a task without a Terminal
and store data locally, a Terminal can be used without Pilots to define protocols and
manage subjects, and so on. This decoupling lets each agent have more freedom in
its behavior at the expense of the complexity of configuring and maintaining them
(see Sec. 7.10 and 7.13). All interaction is based on the “listen” callbacks known by
the agents, so to start a task a Terminal will send a Pilot a “START” message contain-
ing information about a Task class that it is to run along with its parameterization.
The Pilot then attempts to run the task, sends a message to the Terminal alerting it
to a “STATE” change, and begins streaming data back to it in messages with a “DATA”
key.

Each pilot is capable of mutually coordinating with one or manyCopilots8. We are

Co-Pilot
8 A previous version of this paper described a
third, subordinate “Child” agent that performed
auxiliary operations in a task. We now view such
a hierarchy as unnecessary, and that distribution
of labor within a task is better served by a fluid
combination of multiple Pilots than thinking of
them as qualitatively different agents. We now
refer one among multiple agents performing a task
together as a “copilot.”

still experimenting with, and thus openminded to the best way to structure multi-
pilot tasks. Like many things in Autopilot, there is no one right way to do it, and the
strategy depends on the particular constraints of the task. We include a few examples
in the network latency and go/no-go tasks in the plugin that accompanies this paper,
and expand on this a bit further in a few parts of section 7, as it is a major point of
active development.

5.7.1 Behavioral topologies

We think one of the most transformative features of Autopilot’s distributed struc-
ture is the control that users have over what we call “behavioral topology.” The logic
of hardware and task operation within an agent, the distribution of labor between
agents performing a task, and the pattern of connectivity and command within a
swarm of agents constitute a topology.

Below we illustrate this idea with a few examples:

https://wiki.auto-pi-lot.com/index.php/Plugin:Autopilot_Paper


74 swarmpunk: rough consensus and running code in brains, machines, and society

• Pilot Swarm - The first and most obvious topological departure from tradi- Pilot Swarm
tional behavioral instrumentation is the use of a single computer to indepen-
dently coordinate tasks in parallel. Our primary installation of Autopilot is a
cluster of 10 behavior boxes that can independently run tasks dispatched from
a central terminal which manages data and visualization. This topology high-
lights the expandability of an Autopilot system: adding new pilots is inexpensive,
and the single central terminal makes controlling experiments and managing data
simple.

• Shared Task - Tasks can be shared across a set of copilots to handle tasks with Shared Task
computationally intensive operations. For example, in an open-field navigation
task, one pilot can deliver position-dependent sounds while another records and
analyzes video of the arena to track the animal’s position. The terminal only
needs to be configured to connect to the parent pilot, but the other copilot is
free to send data to the Terminal marked for storage in the subject’s file as well.

• Distributed Task - Many pilots with overlapping responsibilities can cooperate Distributed Task
to perform distributed tasks. We anticipate this will be useful when the experi-
mental arenas can’t be fully contained (such as natural environments), or when
experiments require simultaneous input and output from multiple subjects. Dis-
tributed tasks can take advantage of the Pi’s wireless communication, enabling,
for example, experiments that require many networked cameras to observe an
area, or experiments that use the Pis themselves as an interface in a multisubject
augmented reality experiment.

• Multi-Agent Task - Neuroscientific research often consists of multiple mutu- Multi-Agent Task

home cage 
monitoring

multiple
tasks

ally interdependent experiments, each with radically different instrumentation.
Autopilot provides a framework to unify these experiments by allowing users
to rewrite core functionality of the program while maintaining integration be-
tween its components. For example, a neuroethologist could build a new “Ob-
server” agent that continually monitors an animal’s natural behavior in its home
cage to calibrate a parameter in a task run by a pilot. If they wanted to manipu-
late the behavior, they could build a “Compute” agent that processes Calcium
imaging data taken while the animal performs the task to generate and admin-
ister patterns of optogenetic stimulation. Accordingly, passively observed data
can be combined with multiple experimental datasets from across the subject’s
lifespan. We think that unifying diverse experimental data streams with interop-
erable frameworks is the best way to perform experiments that measure natural
behavior in the fullness of its complexity in order to understand the naturally
behaving brain[175].

5.8 Networking

Agents use two types of object to communicate with one another: core station
objects and peripheral node objects (Figure 5.14). Each agent creates one station
in a separate process that handles all communication between agents. Stations are
capable of forwarding data and maintaining agent state so the agent process is not
unnecessarily interrupted. Nodes are created by individual modules run within an
agent—eg. tasks, plots, hardware—that allow them to send and receive messages
within an agent, or make connections directly to other nodes on other agents after
the station discovers their network addresses. Messages are TCP packets9, so there 9 Autopilot uses ZeroMQ[181] and tornado to

send and process messages

http://www.tornadoweb.org/en/stable/
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is no distinction between sending messages within a computer, a local network, or
over the internet10. 10 Though automatically configuring the use

of faster protocols like IPC for communication
within an agent or different backends like redis or
gstreamer for data streams that would benefit from
them is part of our development goals

terminal

pilot

copilot

independent station
objects

Child Node

Pilot Node

Wheel

Terminal Node

Plot

Data

Task

raw velocity

task event

task data

network nodes
Figure 5.14: Autopilot segregates data streams
efficiently—eg. raw velocity (red) can be plotted
and saved by the terminal while only the
task-relevant events (blue) are sent to the primary
pilot. The pilot then sends trial-summarized data
to the terminal (green).

Both types of networking objects are tailored to their hosts by a set of callback func-
tions — listens — that define how to handle each type of message. Messages have
a uniform key-value structure, where the key indicates the listen used to process
the message and the value is the message payload. This system makes adding new
network-enabled components trivial:

Listing 7: A new networked LED
1 class LED_RGB(Hardware):
2 def __init__(self):
3 # call self.color for a 'COLOR' message
4 self.listens = {'COLOR': self.color}
5 self.node = networking.Node(
6 id = 'BEST_LED',
7 listens = self.listens)
8

9 def color(msg):
10 self.set_color(msg.value)
11

12 # elsewhere in the code, we change the color to red!
13 node.send(to='BEST_LED', key='COLOR', value=[255,0,0])

A

B

C

D

E

to:B

to:C to:A

to:A

Figure 5.15: Treelike network
structure—downstream messages are addressed by
successive nodes, but upstream messages can always
be pushed until the target is found.

Messages are serialized11 with JSON, and can handle arrays, including on-the-fly

11 converted to binary suitable for sending between
computers

compression with blosc. Net Nodes can create additional sockets to stream data that
is stashed in a queue, and can take advantage of message batching and compressing
multiple arrays together when latency is less critical.

Network connectivity is currently treelike by default (Figure 5.15) — each inde-
pendent networking object can have many children but at most one parent. This
structure makes an implicit assumption about the anisotropy of information flow:
‘higher’ nodes don’t need to send messages to the ‘lowest’ nodes, and the ‘lowest’
nodes send all their messages to one or a few ‘higher’ nodes. It enforces simplified
delegation of responsibilities in both directions: a terminal shouldn’t need to know
about every hardware object connected to all of its connected pilots, it just sends
messages to the pilots, who handle it from there. A far-downstream node shouldn’t
need to know exactly how to send its data back to the terminal, so it pushes it up-
stream until it reaches a node that does.

This treelike structure is useful for getting started quickly with the default full sys-
tem configuration, but for experimenting with different configurations it is also pos-
sible to directly connect network nodes. The Station backbone is then a useful way
of connecting objects across agents, as messages can be sent as multihop messages
through a connected tree of stations12 to make an initial connection without hard-

12 For example, to send a message from E to C in the
diagram above:

node.send(to=["A", "B", "C"])

coding an IP or Port. In the future we plan to simplify this further by directly im-
plementing a peer to peer discovery model, see Section 7.6.

https://www.blosc.org/
https://docs.python.org/3/library/queue.html#queue.Queue
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5.9 GUI & Plots

The terminal’s GUI controls day-to-day system operation13. It is intended to be a 13 Autopilot uses PySide, a wrapper around Qt, to
build its GUI.nontechnical frontend that can be used by those without programming experience.

For each pilot, the terminal creates a control panel that manages subjects, task op-
eration, and plots incoming data. Subjects can be managed through the GUI, in-
cluding creation, protocol assignment, and metadata editing. Protocols can also be
created from within the GUI. The GUI also has a set of basic maintenance and in-
formational routines in its menus, like calibrating water ports or viewing a history
of subject weights.

The simple callback design and network infrastructure makes adding new GUI func-
tionality straightforward, and in the future we intend to extend the plugin system
such that plugins can provide additional menu actions, plots, and utilities.

5.9.1 Plotting

Trial Plot
{"data": {

"target" : "point",
"response" : "segment",
"correct" : "rollmean"

},
"roll_window" : 50}

Continuous Plot
{"data": {

"target" : "point",
"response" : "segment",
"velocity" : "shaded"

},
"continuous": true}

Figure 5.16: PLOT parameters for Figure 5.17. In
both, “target” and “response” data are mapped to
“point” and “segment” graphical primitives, but
timestamps rather than trial numbers are used for
the x-axis in the “continuous” plot (Figure 5.17,
bottom). Additional parameters can be specified,
eg. the trial plot (Figure 5.17, top) computes
rolling accuracy over the past 50 trials

Realtime data visualization is critical for monitoring training progress and ensuring
that the task is working correctly, but each task has different requirements for visu-
alization. A task that has a subject continuously running on a ball might require
a continuous readout of running velocity, whereas a trial-based task only needs to
show correct/incorrect responses as they happen. Autopilot approaches this prob-
lem by assigning the data returned by the task to graphical primitives like points,
lines, or shaded areas as specified in a task’s PLOT dictionary (taking inspiration from
Wilkinson’s grammar of graphics[200]).

The GUI is now some of the oldest code in the library, and we are in the process of
decoupling some of its functionality from its visual representation and moving to
a model where it is a thinner wrapper around the data modeling tools. Following
the lead of formal models with strict typing will, for example, make plotting more
fluid where the researcher can map incoming data to the set of graphical elements
that are appropriate for its type. We discuss this further in section 7.8

Figure 5.17: Screenshot from a terminal GUI
running two different tasks with different plots
concurrently. pilot_1 runs 2 subjects: (subject_1
and subject_2), while pilot_2 runs subject_3.
See Figure 5.16 for plot description

https://wiki.qt.io/PySide
https://www.qt.io/
http://docs.auto-pi-lot.com/guide.training.html#creating-a-subject
http://docs.auto-pi-lot.com/guide.training.html#creating-a-protocol
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Tests

We have been testing and refining Autopilot since we built our
swarm of 10 training boxes in the spring of 2019. In that time 178 mice1 have per- 1 All procedures were performed in accordance

with National Institutes of Health guidelines, as
approved by the University of Oregon Institutional
Animal Care and Use Committee.

formed over 6 million trials on a range of tasks. While Autopilot is still relatively
new, it is by no means untested.

In this section we will present a set of basic performance benchmarks while also
showing several of the different ways that Autopilot can be used. The code for all
of the following tests is available as a plugin that is further documented on the wiki,
and runs on a prerelease of v0.5.0. Materials tables (Table 6.1) for each test link more
specifically to the test code and provide additional hardware and version documen-
tation, where appropriate.

Table 6.1: General Materials

Hardware
Raspi Raspberry Pi 4b
Oscilloscope Rigol DS1054Z

Software
Autopilot v0.5.0a
Plugin Autopilot_Paper
Python 3.9.12
RaspiOS Bullseye 22-04-04 (lite)

Analysis
R 4.2.0
ggplot2[201] 3.3.5
dplyr[202] 1.0.9
purrr[203] 0.3.4
pandas[194] 1.4.2
numpy[173, 204] 1.21.6

6.1 GPIO Latency

Neurons compute at millisecond timescales, so any task that links neural compu-
tation to behavior needs to have near-millisecond latency. We start by characteriz-
ing Autopilot’s GPIO control latency in “script mode” — using the GPIO control
classes on their own, without using any of the rest of Autopilot’s modules.

Table 6.2: GPIO Latency Materials. (Parameters
in {} are input in separate runs)

Code test_gpio.py
replicate python test_gpio.py -w

{0,1,2} -n 100000
gpiozero 1.6.2
pigpio 3c23715

6.1.1 Output Latency

We first tested the software measured latency between when a command to write
a value to a GPIO pin is issued and when it completes (Figure 6.1, Table 6.2). By
default, the pigpio interface we use to control GPIO pins issues a command and then
confirms the request was successful by querying the pigpio daemon for the status
of the pin (Write+Read). We extended pigpio to just issue the command without
confirmation to estimate the true time between when the command is issued and
when the voltage of the pin changes (Write). Each of these operations takes roughly
40µs with minimal jitter (Median ± IQR — Write Only: 40.8µs±0.41, Write and
Read: 88.4 µs±2.02, n=100,000 each).

Write+Read

Write

gpiozero

0 25 50 75 100
Median Latency (µs)

16.2 (±0.22)  

40.8 (±0.41)

88.4 (±2.02)

Figure 6.1: Software latency from GPIO write to
completion of command. Values are presented as
medians ± IQR with n=100,000 tests for each. A
random subsample of 500 (for tractability of
plotting) of each type of test are presented (black
points) after filtering to the bottom 99th percentile
to exclude extreme outliers. Commands sent using
pigpio (red) took roughly 40µs each (write and
read are effectively two separate commands, Write
Only: 40.8µs±0.41, Write and Read: 88.4
µs±2.02). The prototype gpiozero wrapper (blue)
using RPi.GPIO as its backend was faster, taking
16.2µs±0.22 to complete.

Pigpio is useful as a general purpose controller because of its ability to run scripts
within its daemon, use hardware PWM via direct memory access, and consistently
poll for pin state, but takes a latency penalty because the python interface communi-
cates with it through a local TCP socket. To demonstrate the flexibility of Autopilot

https://github.com/auto-pi-lot/plugin-paper
https://wiki.auto-pi-lot.com/index.php/Plugin:Autopilot_Paper
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://wiki.auto-pi-lot.com/index.php/Rigol_DS1054Z
https://github.com/auto-pi-lot/autopilot/tree/v0.5.0a
https://wiki.auto-pi-lot.com/index.php/Plugin:Autopilot_Paper
https://downloads.raspberrypi.org/raspios_lite_armhf/images/raspios_lite_armhf-2022-04-07/
https://github.com/auto-pi-lot/plugin-paper/blob/main/plugin_paper/scripts/test_gpio.py
https://github.com/auto-pi-lot/plugin-paper/blob/main/plugin_paper/hardware/zero.py
https://github.com/sneakers-the-rat/pigpio/commit/3c237159e5995ec58cd673579bdd66a8d819b269
https://github.com/sneakers-the-rat/pigpio/commit/0782de06f0a5c092063118733ad2df9d65f1f1a0
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in incorporating additional software libraries, we wrote a thin wrapper around gpi-
ozero, which can use RPi.GPIO to directly write to the GPIO registers. For simple
output, this wrapper proved to be faster (16.2 µs ± 0.22, n=100,000), and with
6̃3 lines of code is now available in the plugin accompanying this paper to be used,
repurposed, and extended.

6.1.2 Roundtrip Input/Output Latency
Table 6.3: Roundtrip Latency Materials

Function Generator Koolertron CJDS98
Code test_gpio.py
Replicate python

test_gpio.py
-w {3,4}

Output commands usually aren’t issued in isolation, but as a response to some ex-
ternal or task-driven trigger. We measured the roundtrip latency from a 5V square
pulse from an external function generator to when an output pin was flipped from
low to high on an oscilloscope (Table 6.3).

Typically that is as much methodological detail as you would expect in a scientific
paper, but actually making those measurements via oscilloscope requires knowing
how to set up such a test as well as how to extract the measured data afterwards —
which is not altogether trivially available technical knowledge. As an example of how
integrating semantically linked documentation with experimental tools enables a
fundamentally deeper kind of reproducibility and methodological transparency, we
instead documented these operations, including a code sample and a guide to un-
locking additional features on our oscilloscope on the autopilot wiki. The code to
extract traces from the oscilloscope is also included in this paper’s plugin, which
links to the oscilloscope page with a [[Controls Hardware::Rigol DS1054Z]] tag,
so it is possible to bidirectionally find code examples from the oscilloscope page as
well as find further documentation about the hardware used in this paper from the
plugin page. The same can be true for any hardware used by any plugin in any paper
using Autopilot.

We used the assign_cbmethod of the Digital_In class to test the typical roundtrip
latency that Autopilot objects can deliver. This gave us a median 474 µs (IQR:
52.5µs) latency (Red in Figure 6.3). GPIO callbacks are flexible, and can use arbi-
trary python functions, but if all that’s needed is to trigger one pin off of another
with some simple logic like a parametric digital waveform or static “on” time, pigpio
also allows us to directly program pin to pin logic as a “pigs” script (literally Figure
6.2) that runs within the pigpio daemon. The pigs script gave us roughly three or-
ders of magnitude lower latency (Median ± IQR: 370ns ± 140, blue in 6.3).

Pigs Trigger Script
" ".join([

"tag 999",
# read input pin
f"r {pin_in.pin_bcm}",
# if off, goto 998
f"jz 998",
# else, turn on
f"w {pin_out.pin_bcm} 1",
# then goto 999
"jp 999",
"tag 998",
# turn off
f"w {pin_out.pin_bcm} 0",
# jump to beginning
f"jp 999"

])

Figure 6.2: The pigs script used to trigger one pin
(pin_out), from another (pin_in). At the expense
of a little bit of complexity having to write a script
in its scripting language, we are able to reduce
latency by three orders of magnitude.
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Figure 6.3: Roundtrip latency from external
trigger to digital output using two methods:
Typical Autopilot callback function given to a
Digital_In object that turns a Digital_Out pin
on for 1ms when an input pin changes state (Red,
Left, Median ± IQR: 474 µs± 52.5). Pigs script
that runs entirely within the pigpio daemon (Blue,
Right, 380ns ± 140). For each, black points
represent individual measurements (n=525),
annotations are quartiles.

https://github.com/auto-pi-lot/plugin-paper/blob/main/plugin_tests/hardware/zero.py
https://gpiozero.readthedocs.io/en/stable/
https://gpiozero.readthedocs.io/en/stable/
https://pypi.org/project/RPi.GPIO/
https://wiki.auto-pi-lot.com/index.php/Koolertron_CJDS98
https://github.com/auto-pi-lot/plugin-paper/blob/main/plugin_paper/scripts/test_gpio.py
https://wiki.auto-pi-lot.com/index.php/Rigol_DS1054Z
https://wiki.auto-pi-lot.com/index.php/Plugin:Autopilot_Paper
https://docs.auto-pi-lot.com/en/latest/hardware/gpio.html#autopilot.hardware.gpio.Digital_In.assign_cb
http://abyz.me.uk/rpi/pigpio/pigs.html
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6.2 Sound Latency
Table 6.4: Sound Latency Materials

Sound Card Hifiberry Amp2
jack 1.9.22
Code test_sound.py
Replicate python test_sound.py

We measured end to end, hardware input to sound output latency by measuring the
delay between an external digital input and the onset of a 10kHz pure tone (Table
6.4). Sound playback was again triggered by the Digital_In class’s callback method,
and sound samples were buffered in a deque held in a separate process by the jack
audio client between each trial. A Digital_Out pin was wired to the Digital_In
pin in order to deliver the trigger pulse (but the Digital_Out pin was uninvolved in
the software trigger for sound output).

Autopilot’s jack audio backend was configured with a 192kHz sampling rate with a
buffer with two periods of of 32 samples each for theoretical minimum latency of
0.33ms2. We observed a median 1.35ms (± 0.72 IQR) latency across 521 samples —

2 A previous version of this paper included
benchmarking and comparison to Bpod and
pyControl’s sound onset latency, but since
then both packages have changed substantially,
including Bpod creating a new hifi sound module
based off HiFiBerry hardware very similar to the
card used here, making those benchmarks obsolete.
In this version we have omitted comparative
benchmarks in favor of allowing the maintainers of
those packages to publish their own benchmarks.

roughly 4x the theoretical minimum (Figure 6.4). This suggests that Autopilot elim-
inates most perceptible end-to-end latency, which is necessary for tasks that require
realtime feedback. One clear future direction is to write the sound processing loop
in a compiled language exposed with a foreign function interface (FFI) to decrease
both latency and jitter.
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Figure 6.4: Autopilot has a median 1.35ms (± .72
IQR) latency between an external trigger and
sound onset. Individual trials (dots, n=521) are
shown beneath a density plot (red area under curve)
colored by quartile (shades, numbers above are
median, first, and third quartile). This latency is
roughly 4x the theoretical minimum (0.33ms,
dashed line).

6.3 Network Latency

Table 6.5: Network Test Materials

Router TP-Link AC1750
Chrony 4.0
zmq 22.3.0
Code Network_Latency
Replicate Assign task to subject from Ter-

minal, start Task.

To support data-intensive tasks like those that require online processing of video
or electrophysiological data, the networking modules at the core of Autopilot need
high bandwidth and low latency.

To test the latency of Autopilot’s networking modules, we switch from “script mode”
to “Task mode” (Table 6.5). Tasks are useful for encapsulating multistage routines
across multiple devices that would be hard to coordinate with scripts alone. Our
Network_Latency task consists of one “leader” pilot sending timestamped messages
to a “follower” pilot which returns the timestamp marking when it received the mes-
sage. The two pis communicate via two directly connected Net_Nodes (rather than
routing each message through agent-level Station objects) after the leader pi ini-
tiates the follower with a multihop “START” message routed through a Terminal
agent containing the task and networking parameters. We measured latency using
software timestamps while synchronizing the clocks of the two pis with Chrony, an
NTP daemon previously measured to synchronize Raspberry Pis within dozens of
microseconds[205]3, with the leader pi hosting an NTP server and the follower pi 3 Our sync is likely to be near to or better than that

reported in [205]: in addition to a quiet network,
we configured chrony to poll more frequently and
tolerate a smaller error than default

synchronizing its clock solely from the leader. We documented this on the wiki too,
since synchronization is a universal problem in multi-computer experiments.

Point to point latency was 0.975ms (median, ± 0.1 IQR, n=10,000, Figure 6.5)
with some clear bimodality where a subset of messages (2̃,300 of 10,000) took longer

https://wiki.auto-pi-lot.com/index.php/HiFiBerry_Amp2
https://github.com/auto-pi-lot/plugin-paper/blob/main/plugin_paper/scripts/test_sound.py
https://docs.python.org/3/library/collections.html#collections.deque
http://jackaudio.org/
https://sites.google.com/site/bpoddocumentation/assembling-bpod/hifi-module
https://www.tp-link.com/us/home-networking/wifi-router/archer-c7/
https://wiki.auto-pi-lot.com/index.php/NTP
https://github.com/auto-pi-lot/plugin-paper/blob/main/plugin_paper/tasks/network.py
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://wiki.auto-pi-lot.com/index.php/NTP
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) Figure 6.5: Network latency from when a message
is sent from one pilot to when it is received by
another. Messages took 0.975ms to send and
receive (median, ± 0.1 IQR, n=10,000, overlaid
numbers and red shading in density plot indicate
quartiles). There is a clear bimodality in latencies
for individual messages (black dots, jittered in
y-axis) with unclear cause.

(median 1.567ms). The source of the bimodality is unclear to us, though it could
be due to network congestion or interruption by other processes as the networking
modules are not run in their own process like the sound server. This latency includes
message serialization and deserialization by the builtin JSON library, which is on
the order of roughly 100µs each for even the very small messages sent in this test. In
future versions we will explore other serialization tools like msgpack and offer them
as alternate serialization backends.

6.4 Network Bandwidth
Table 6.6: Bandwidth Test Materials.

Terminal Macbook Pro 2019, macOS
12.3.1, 2.4 GHz 8-Core Intel
Core i9

blosc2 v0.2.0
Code Bandwidth_Test,

Pilot.l_bandwidth
Replicate Terminal > Tools > Test Band-

width

To test Autopilot’s bandwidth, we demonstrate yet another modality of use, using
Autopilot’s Bandwidth_Test widget, an action available from the Terminal GUI’s
tests menu that corresponds to a callback “listen” method in the Pilot (Table 6.6).
This test requests that one or several pilots send messages at a range of selected fre-
quencies and payload sizes back to the terminal. The messages pass through four
networking objects en route: the stations and network nodes running the test for
both the terminal and pilots (See Figure 5.14).

The needs for streaming experimental data vary depending on what is being streamed.
Electrophysiological data is an n-electrode length vector sampled at a rate of dozens
to hundreds of kilohertz, so each individual message isn’t very large but there are a
lot of them. Video data is a width by height (and for color video, by channel) array
that can be relatively large4, but it is captured at dozens to hundreds of hertz. Differ- 4 (1920 * 1080 * 3 * 8 bits) / 8 = 6̃ megabytes per

frame of a 1080p color video, which is why video is
rarely streamed uncompressed

ent data streams also have different degrees of compressibility: noisy, quasirandom
electrical signals compress relatively poorly, while the typical behavioral neurosci-
entist’s video of an animal that takes up 1/10th of the frame against a white back-
ground can have compression ratios in the hundreds.

Autopilot tries to provide flexibility for streaming different data types by offering
message batching and optional on-the-fly compression with blosc. The bounds on
bandwidth are then the speed at which an array can be compressed and the rate at
which messages of a given size can be sent.

Autopilot’s networking modules were able to send an “empty” (402 byte) message
with headers describing the test but no payload at a maximum observed rate of
1,818Hz5. Approximately 15% of the duration is spent in message serialization, as a 5 maximum average rate of 5000 messages for each

of the equivalent empty message tests in the four
conditions described below

“frozen” preserialized message can be sent at 2,100Hz, though we imagine the need
to send the same message thousands of times is rare.

We tested four types of messages with nonzero array6 payloads: since the entropy of 6 In all cases, float64 numpy arrays encoded in
base64an array determines how compressible it is, we sent random and all-zero arrays with

https://msgpack.org/
https://github.com/auto-pi-lot/autopilot/blob/v0.5.0/autopilot/gui/menus/tests.py
https://github.com/auto-pi-lot/autopilot/blob/d140908da11bf8c64511c7920f303734ca103fa1/autopilot/core/pilot.py#L460
https://docs.auto-pi-lot.com/en/v0.5.0/gui/menus.html#autopilot.gui.menus.tests.Bandwidth_Test
https://www.blosc.org/
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169.63MB Figure 6.6: Bandwidth measurements between a
pilot and terminal for compressed (solid lines) or
uncompressed (dotted lines) arrays of random
numbers (black) or zeros (red, each point n=5000
messages). As message size increased, the
bandwidth for the rate of bytes transferred in
serialized messages (“message bandwidth,” left)
plateaued at 29.25MBytes/s, while the effective
bandwidth of arrays before and after compression
(“payload bandwidth,” right) reached
169.63MBytes/s. Real data will fall somewhere in
this effective bandwidth range, depending on its
compressibility.

and without compression. The random and all-zero arrays are the floor and ceiling
of compressibility, respectively. Compression gives us two notions of bandwidth:
the literal number of bytes that can be passed through a connection, and the effective
bandwidth of the size of the arrays that can be transferred with a given compression
ratio. We refer to these as “message” and “payload” bandwidth, respectively in Fig-
ure 6.6. Message bandwidth reflects the hardware limitations of the Raspberry Pi,
but payload bandwidth is the number that matters in practice, as it measures the
actual “speed of data” that can be used by the receiver.

As we increased the size of the array payload7, the message bandwidth plateaued 7 n=5,000 for each condition at each size
at a maximum of 29.25MByte per second (Figure 6.6, left). After this plateau, in-
creasing the message size trades off linearly with the rate of messages sent. For all
but the compressed array of zeros, the payload bandwidth mirrored the message
bandwith with some trivial overhead from the base64 encoding. The compressed
array of zeros, however, had an effective payload bandwidth of 169.6MBytes/s, a
compromise between the speed of compression with the smaller message size8. The 8 A message with a 1̃MByte zero array payload

compressed to 6̃KBytes.compressed random array had only negligible differences in payload and message
bandwidth compared to the uncompressed random array, indicating that the over-
head for blosc is trivial.

The ability to batch messages allows researchers to tune the size of an individual
message to their particular need for high bandwidth or low latency. Since the com-
pressibility of real data varies across the entire entropic range from randomness to
arrays of all zeros, Autopilot doesn’t have a single “bandwidth”, but one that ranges
between 30 and 170MByte/s9.This bandwidth makes Autopilot capable of stream- 9 In this dataset. There is additional payload

bandwidth headroom with larger messages, and we
include an additional dataset with a 200MByte/s
bandwidth in the supplement.

ing raw Calcium imaging10 and electrophysiological data from modern high-density

10 2-Photon: 5.9MB/s
(12 bits * 512x512 resolution * 15Hz)

probes11. Its flexible architecture allows researchers to decide how to build their

11 Neuropixels: 14.4MB/s[156]
(10 bits * 30kHz * 384 channels)

experiments by distributing different components over different combinations of
computers: stream data from a raspberry pi to a more powerful computer for pro-
cessing, use GPIO rather than network triggers for time-critical operations — meet-
ing the tooling challenge of complex, hardware-intensive, multimodal experiments
that define contemporary systems neuroscience.
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6.5 Distributed Go/No-go Task

Table 6.7: Go/No-go Materials

Hardware
Beam Break TT Electronics OPB901L55
Monitor Acer S230HL
Lick Port Autopilot Tripoke v1
Light Sensor Thorlabs PM100D

Software
psychopy v3.1.5
glfw v1.8.3

We designed a visual go/no-go task as a proof of concept for distributing task el-
ements across multiple Pis, and also for the presentation of visual stimuli (Figure
6.7, Table 6.7). While the rest of the tests presented have been re-run, in the time
since the intitial publication of the preprint we have not done substantial work on
Autopilot’s visual stimulus module, and so this section is presented as previously
written using the v0.1.0 initial release.

Wheel

?

LED

Monitor

Lick
Sensor

Solenoid
Valve

+ +

Velocity
TriggerCopilot Pilot

Figure 6.7: Hardware distribution for the
distributed go/no-go task. Red lines indicate
physical connections between hardware
components. The lick sensor, solenoid valve, and
LED are physically bundled into one component
represented as the mouse’s microphone.

In this task, a head-fixed subject would12 be running on a wheel in front of a display

12 No mice were trained on this task

with a lick-detecting water port able to deliver reward. Above the port is an LED.
Whenever the LED is green, if the subject drops below a threshold velocity for a fixa-
tion period, a grating stimulus at a random orientation is presented on the monitor.
After a random delay, there is a chance that the grating changes orientation by a ran-
dom amount. If the subject licks the port in trials when the orientation is changed,
or refrains from licking when it is not, the subject is rewarded.

One pilot controlled the operation of the task, including the coordination of a copi-
lot. The pilot was connected to the LED and solenoid valve for reward delivery, as
well as a monitor13 to display the gratings14. The copilot continuously streamed

13 (1920x1080px, 60Hz)
14 Visual stimuli were presented with Psychopy
using the glfw backend while Autopilot was run in
a dedicated X11 server.

velocity data (measured with a USB optical mouse against the surface of the wheel)
back to the terminal for storage (see also Figure 5.14, which depicts the network
topology for this task). The copilot waited for a message from the pilot to initiate
measuring velocity, and when a rolling average of recent velocities fell below a given
threshold the copilot sent a TTL trigger back to the pilot to start displaying the grat-
ing. This split-pilot topology allows us to poll the subject velocity continuously (at
125Hz in this example) without competing for resources with psychopy’s rendering
engine.

We measured trigger (TTL pulse from the copilot) to visual stimulus onset latency
using the measurement cursors of our oscilloscope as before. To detect the onset
of the visual stimulus, we used a high-speed optical power meter attached to the
top-left corner of our display monitor. The stimulus was a drifting Gabor grating
drawn to fill half the horizontal and vertical width of the screen (960 x 540px), with
a spatial frequency of 4cyc/960px and temporal (drift) frequency of 1Hz.

20 25 30 35 40 45
Trigger-Stimulus Latency (ms)

Figure 6.8: Stacked dots are a histogram of
individual observations (n=50) underneath the
probability density (black line), red lines indicate
quartiles.

We observed a bimodal distribution of latencies (Quartiles: 28, 30, 36ms, n=50,
Figure 6.8), presumably because onsets of visual stimuli are quantized to the refresh
rate (60Hz, 16.67ms) of the monitor. This range of latencies corresponds to the
second and third frame after the trigger is sent (2/3 of observations fall in the 2nd
frame, 1/3 of observations in the 3rd frame). We observed a median framerate of
36.2 FPS (IQR: 0.7) across 50 trials (8863 frames, Figure 6.9).

We further tested the Pi’s framerate by using Psychopy’stimeByFrames test—a script
that draws stimuli without any Autopilot components running—to see if the fram-
erate limits were imposed by the hardware of the Raspberry Pi or overhead from
Autopilot (Table 6.8). We tested a series of Gabor filters and random dot stimuli
(dots travel in random directions with equal velocity, default parameters) at differ-
ent screen resolutions and stimulus complexities. The Raspberry Pi was capable
of moderately high framerates (>60 FPS) for smaller, lower resolution stimuli, but
struggled (<30 FPS) for full HD, fullscreen stimuli.

https://wiki.auto-pi-lot.com/index.php/TT_Electronics_OPB901L55
https://www.productchart.com/monitors/16901
https://wiki.auto-pi-lot.com/index.php/Autopilot_Tripoke
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3341
https://www.psychopy.org/
https://www.glfw.org/
https://github.com/psychopy/psychopy/blob/3.1/psychopy/demos/coder/timing/timeByFrames.py
https://www.psychopy.org/api/visual/dotstim.html#psychopy.visual.DotStim
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Figure 6.9: Probability density of framerates for
960 x 540px grating rendered at 1080p. Red lines
indicate quartiles

Autopilot is appropriate for realtime rendering of simple stimuli, and the proof-of-
concept API we built around Psychopy doesn’t impose discernible overhead (Mean
framerate for a960 x 540px grating at1080p in Autopilot: 36.2 fps, vs. timeByFrames:
35.0 fps). In the future we will investigate prerendering and caching complex stim-
uli in order to increase performance. A straightforward option for higher-performance
video would be to deploy an Autopilot agent running on a desktop computer with
a high-performance GPU, or to use a single-board computer with a GPU like the
NVIDIA Jetson ($99)15.

15 as we did in [180]
Stimulus Resolution Size / # Dots Mean FPS σ FPS

Gabor Filter 1280 x 720 300 x 300px 106.4 5.5
Gabor Filter 1920 x 1080 300 x 300px 75.2 3.5
Gabor Filter 1280 x 720 640 x 360px 53.5 2.2
Gabor Filter 1920 x 1080 960 x 540px 35.0 1.0
Gabor Filter 1280 x 720 720 x 720px 41.5 2.2
Gabor Filter 1920 x 1080 1080 x 1080px 20.1 0.7

Random Dots 1280 x 720 100 dots 98.0 3.8
Random Dots 1920 x 1080 100 dots 67.6 3.0
Random Dots 1280 x 720 1000 dots 20.9 0.25
Random Dots 1920 x 1080 1000 dots 19.5 0.36

Table 6.8: Tests performed over 1000 frames with
PsychoPy’s timeByFrames test.

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://github.com/psychopy/psychopy/blob/3.1/psychopy/demos/coder/timing/timeByFrames.py




7
Limitations and Future Directions

We will likely never view Autopilot as “finished.” Autopilot—like all open-source software—is an evolving project,
and this paper captures it as a snapshot at v0.5.0. We are invested in its development, and will be continually working to fix bugs,
make its use more elegant, and add new features in collaboration with other researchers.

We expect that as the codebase matures and other researchers use Autopilot in new, unexpected ways that some fundamental
elements of its structure may evolve. We have built version logging into the structure of the system so that changes will not
compromise the replicability of experiments (see 7.5 below). While there will inevitably be breaking changes, these will be trans-
parently documented, announced in release notes, and indicated with semantic versioning in order to alert users and describe
how to adapt as needed.

We recognize the risk and inertia of retooling lab infrastructure, and there is still much work to be done on Autopilot. We welcome
all issues and questions from anyone interested in contributing, or just curious to try it out — trying Autopilot is ultimately as
risky as buying a Raspberry Pi.

The current major planned changes (also see the todo page in the docs) include:

1. Python, Meet Rust - Python is very useful as a high-level glue language, and its accessibility to a large number of scientific
programmers is important to us, but it has its own very real performance limitations. As Autopilot’s modules mature and
stabilize, we are interested in rewriting core routines like sound presentation and networking in rust and exposing them to
python with tools like PyO3

2. Real Realtime - Beneath user space decisions like programming language, the timing of CPU operations in linux is still
determined by the kernel — this is one of the major reasons why other projects are based around dedicated microcontrollers.
For almost everything that most scientists want to do, the standard linux kernel is perfectly fine, but we are interested in
investigating what it would take to provide true deterministic realtime performance via Autopilot’s high-level object system.
One approach might be to provide prebuilt realtime kernel images along with tools to easily deploy them, though no firm
plan has been made.

3. Integration - We will continue to collaborate with other programming teams to be interoperable with a broader array of other
tools. Our next set of planned integrations include recording electrophysiological data by integrating with Open Ephys[206],
optical imaging data from the Miniscope project [207, 208], and shared processing and control pipelines with Bonsai[168].

4. Data Ingest & Export - We are releasing Autopilot’s data modeling system in v0.5.0 as an alpha release alongside this paper,
and it includes prototype export interfaces to Neurodata Without Borders[182] and Datajoint[209]. Over the next several
releases, we will continue to improve our data model so that researchers can easily structure their data and choose among
different backends for storage. We are also working on a separate project to make tools to ingest data from the more ad-hoc
directory-based data formats widely used in science and ingest them into Autopilot’s and other tools formal modeling systems.
In the longer term, we are interested in making Autopilot interoperable with linked data systems as part of a broader vision
of digital infrastructure.

5. Provenance - Autopilot stores version information and local configuration in multiple places, and it is technically possible
to faithfully replicate an experiment, but recording of provenance can still be consolidated and improved. By formalizing our
object and data model, we will also systematize the many changes in configuration and version possible across the system for
complete provenance tracking.

6. P2P Networking - The default tree structure of Autopilot’s networking modules has proven to be unnecessarily limiting
over time. In part, we had preoptimized for processing messages in a separate processes assuming that would help problems
from dropped messages and overflowing send buffers, but in practice messages are almost never dropped and network nodes
are as effective as stations in sending and receiving large amounts of data. As part of unifying Autopilot’s object system, we will

https://docs.auto-pi-lot.com/en/latest/changelog/index.html
https://semver.org/
https://github.com/auto-pi-lot/autopilot
https://github.com/auto-pi-lot/autopilot/discussions
https://docs.auto-pi-lot.com/en/latest/todo.html
https://github.com/PyO3/pyo3
https://github.com/ros-realtime/linux-real-time-kernel-builder
https://www.nwb.org/
https://www.datajoint.com/
https://github.com/auto-pi-lot/ingesture
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implement a fully peer-to-peer networking system such that each instantiated object has a unique ID so that messages can be
easily addressed from any object to any other in its swarm. We will learn from previous p2p addressing systems like distributed
hash tables to allow net nodes to join the swarm and discover all other nodes automatically without manually configuring IP
addresses and ports. In the longer term we are interested in peer to peer data transfer as well, so that an object serving as a data
source can efficiently stream to many consumers without needing to duplicate each message for every consumer.

7. Slots, Signals, and Streaming - We will be supplementing a more general network structure with a system of specifying
which attributes of each object are data sources, which are sinks, and what kind of connection they accept. Similar to Qt’s
signal and slot model, we want to make it as easy as using a .connect() method to control one piece of hardware with another.
The transforms module should also be able to support branching and forking operations so multiple data sources can be
combined for elaborated hardware control. ZeroMQ is an excellent tool for sending and receiving control messages, but
formalized signals and slots could also specify different streaming tools like redis or gstreamer that might be better suited for
high-bandwidth linear streams like video. Applied generally, this could also solve related problems like the relatively implicit
handling of event triggers in the Task class and the need for manual configuration of connections between pilots and copilots.

8. Rebuild the GUI - The GUI is some of the oldest code in the library, was written before most of the other modules existed,
and needs to be rebuilt. We have started by remaking its central widgets to be generated from pydantic models used increasingly
throughout the system, but the rest of the GUI still needs to be rearchitected into a structure that decreases code duplication
and allows us to do things like provide GUI extensions via plugins. We will likely continue to use Qt for the near future, but
are also exploring the idea of webassembly tools to make browser-based web interfaces for remote control.

9. Plugins - We want Autopilot’s plugin system to be permissive and as natural as the scripting style that most experimental
code is written in, but we still need some means of specifying dependencies on other packages and plugins, among other
improvements. We will be making a plugin generator that makes a folder of plugin boilerplate, as well as tools for installing,
uploading, and synchronizing versions with git and the wiki. Over time we will make all object types within Autopilot able
to be extended with plugins, as well as make it possible to override and extend built-in objects.

10. KnowledgeOrganization - We have been extending our thinking from code itself to more broadly consider the social systems
that surround research code. The wiki was our first step, and we will continue to make more points of integration for smoothly
incorporating contextual knowledge typically stored in lab notebooks into a public, collectively curated information system.
We want to make it easier not only for individual researchers to use Autopilot, but make it easier for labs to coordinate work
across projects without needing to rely on proprietary SaaS platforms with additional tooling for managing swarms, and
moving beyond a single Autopilot wiki to a federated system of wikis for fluid continuity between “private” local coordination
and “public” shared knowledge.

11. Tests - Our collection of tests doesn’t cover the whole codebase, and so as we formalize our contribution process will move
towards a system where all new code must have tests and documentation to be integrated. We also want to integrate our
tests more closely with our documentation so that researchers know which part of the code has explicit tests guaranteeing
functionality.

12. Security - Autopilot is a networked program, and while it doesn’t execute arbitrary code from network messages, there is
no security model to speak of. So far this hasn’t beren a problem, as we encourage only using Autopilot on a local network
behind a router, but as we we build out our networking modules we will investigate how to incorporate identity verification
systems to protect swarms from malicious messages.

13. Metastructure &APIMaturity - The scope and structure of Autopilot is still in flux relative to other, more mature Python
packages. To reach a stable v1.0.0 API, we are in the process of unifying Autopilot’s object structure so everything is clearly
typed, all configuration is explicit, and all code written to handle special cases is absorbed into more general systems. Different
parts of Autopilot have had different degrees of care over time, and so we will be working to catch the oldest modules up,
trim unused ones, and make sure every line in the library is documented and useful. For the time being, flexibility is useful
because frequently used or requested features trace a desire path outlining how its users believe Autopilot should behave. Each
shortcoming we fix in Autopilot’s modules makes it more straightforward to fix the rest, and so once the major remaining
work is completed we will transition to a more conservative pace of development that ensures the longevity of the project.

https://en.wikipedia.org/wiki/Distributed_hash_table
https://en.wikipedia.org/wiki/Distributed_hash_table
https://doc.qt.io/qt-6/signalsandslots.html
https://redis.io/
https://gstreamer.freedesktop.org/
https://github.com/auto-pi-lot/autopilot/blob/f0d20fbf3b33f832cf31136ab7d16abe01a3e924/autopilot/gui/widgets/model.py


Glossary
Agent 5.7 The executable part of Autopilot. A set of startup routines (eg. opening a GUI or starting an audio

server), runtime behavior (eg. opening as a window or running as a background system process), and
event handling methods (ie. listens) that constitute the role of the particular Autopilot instance in
the swarm.

Copilot 5.7 An agent that performs some auxiliary, supporting role in a task—primarily used for offloading some
hardware responsibilities from a pilot.

Graduation 5.3 Moving between successive tasks in a protocol when some criterion is met.

Listen 5.8 A method belonging to the station or node of a particular agent that defines how to process a par-
ticular type of message (ie. a message with a particular key).

Node 5.8 A networking object that some module (eg. hardware, tasks, GUI routines) or method (eg. a listen)
uses to communicate with other nodes. Messages to other agents in the swarm are relayed through
their Station

Pilot 5.7 An agent that runs on a Raspberry Pi, the primary experimental agent of Autopilot. Typically runs
as a system service, receives tasks from a terminal and runs them. Can organize a group of children
if requested by the task.

Protocol 5.3 A (.json) file that contains a list of task parameters and the graduation criteria to move between
them. The tasks in a protocol are also known as its levels.

Stage 5.3 Stages are methods that implement the logic of a task. They can be used analogously to states in a
finite-state machine (eg. wait for trial initiation, play stimulus, etc.) or asynchronously (whenever x
input is received, rotate stimulus by y degrees).

Station 5.8 Each agent has a single station, a networking object that is run in its own process and is responsi-
ble for communication between agents. The station also routes messages from children or other
nodes.

Swarm Informally, a group of connected agents.

Task 5.3 A formalized description of an experiment: the parameters it takes, the data that it collects, the hard-
ware it needs, and a collection of stages that describe what happens during the experiment.

Terminal 5.7 A user-facing agent that provides a GUI for operating and maintaining a swarm.

Topology 5.7.1 A particular combination of agents, their designated responsibilities, and the networking connec-
tions between them invoked by a task (eg. task requires one pilot to record video, one to process the
video, and one to administer reward) or by usage (eg. 10 pilots are connected to a single terminal and
are typically used to run 10 independent tasks, though they could run shared tasks together).

Trial 5.3 If a task is structured such that its stages form a repeating series, a trial is a single completion of that
series.





III
Infrastructure





When Tools Become Infrastructure
As I spent more time in the tool-building world, getting a broader sense of the way
science was done across disciplines, the feeling that I had about our broken experi-
mental tooling that led to Autopilot started to creep into more domains.

I had been getting more interested in internet technologies, formats, wikis and loosely-
structured metadata in the course of my work, and was constantly faced with the mis-
match between what was possible for scientific communication and the way it was
constrained by the publishing system. The interrelationship between the various
forms of digital infrastructure (or lack thereof) and the broader structuring forces
in science was harder and harder to ignore, and burst from me like a flood in one
department meeting focused on collaboration. It felt so sad to me that all my bril-
liant colleagues simply couldn’t collaborate effectively because of the lack of basic
tools. The scientific project as a whole started to feel doomed if we were to continue
working this way, individual labs slicing off tiny slivers of reality to look at alone, in
static papers that were already years out of date by the time they were published.

What started as a sketch of infrastructure for the sake of making science easier quickly
turned into one for making science ethical as it became clear that the primary lim-
itations were not technical, but social, and designed specifically to enable profit to
be extracted at every point. I started to expand my scope, using some techniques
from investigative journalism I had picked up from a few side-projects to dig into
the market structure of the surrounding industries and the plans they had for the fu-
ture of science. The story kept getting bleaker, but as I went I kept stumbling across
and embedding myself within digital diasporic communities that had been dream-
ing of better infrastructure for almost as long as the internet had existed. This also
merged with some lessons in social organization that I had picked up from my coop
and union, and so in the twilight of the “open science” movement, sputtering along,
chasing its tail, it seemed like the main thing we needed was a new vision for orga-
nizing something genuinely transformative rather than nibbling around the edges
of “openness” while the information giants ate the rest. That might explain the per-
haps uneven tone of terror and rage but also hope that runs through this piece.

The lid is off, the box is open, and for the foreseeable future I don’t think I’ll be able
to return to basic research until we make some substantive progress in changing how
it’s done. Rather than abandoning science altogether though, I remain convinced
we can fix some of its worst problems if enough of us believe it is possible and are
willing to take the risks and do the work to make it happen — and who knows, I’m
naïve enough to believe that in the process we might start taking those “broader
impact” sections seriously and build something that genuinely benefits society at
large.





8
Decentralized Infrastructure for (Neuro)science

If we can make something decentralised, out of control, and of great simplicity,
we must be prepared to be astonished at whatever might grow out of that new
medium.

Tim Berners-Lee (1998): Realising the Full Potential of the Web

A good analogy for the development of the Internet is that of constantly renew-
ing the individual streets and buildings of a city, rather than razing the city and
rebuilding it. The architectural principles therefore aim to provide a framework
for creating cooperation and standards, as a small “spanning set” of rules that
generates a large, varied and evolving space of technology.

RFC 1958: Architectural Principles of the Internet

In building cyberinfrastructure, the key question is not whether a problem is a
“social” problem or a “technical” one. That is putting it the wrong way around.
The question is whether we choose, for any given problem, a primarily social or
a technical solution

Bowker, Baker, Millerand, and Ribes (2010): Toward Information Infrastruc-
ture Studies [210]

Billionaires have squatted on the Magna Cum Lauded / […] Methodically they
plotted against those who fought it / […] / Now the scientific process got hijacked
for profits / It flows in the direction that a silver spoon prodded / We’ll get science
for the people when we run the economics.

The Coup (2012) The Gods of Science

We work in an archipelago of technical islands: researchers, labs, consortia, and a few
well-funded institutions reinventing the wheel in parallel. Our knowledge dissemi-
nation systems are as nimble as static pdfs1 served by an extractive publishing turned 1 (save some complicated half-in flirtation with

social media).surveillance industry we can’t seem to quit. Experimental instrumentation except
for that at the polar extremes of technological complexity or simplicity is designed
and built custom, locally, and on-demand2. Software for performing experiments 2 At least in systems neuroscience, appropriate

caveats below.is a patchwork of libraries that satisfy some of the requirements of the experiment,
sewn together by some uncommented script written years ago by a grad student
who left the lab long-since. The technical knowledge to build both instrumentation
and software is fragmented and unavailable as it sifts through the funnels of word-
limited methods sections and never-finished documentation. Our data is born into
this world without coherent form to speak of, indexable only by passively-encrypted
notes in a paper lab notebook, and analyzed once before being mothballed in ig-
nominy on some unlabeled external drive.

These problems are typically treated in isolation, but all are symptomatic of a broader
deficit indigital infrastructure for science. Every routine need that requires heavy

https://www.w3.org/1998/02/Potential.html
https://datatracker.ietf.org/doc/html/rfc1958
https://doi.org/10.1007/978-1-4020-9789-8_5
https://doi.org/10.1007/978-1-4020-9789-8_5
https://youtu.be/lW59xoilGnw
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technical development, an appeal to a hostile publishing system, or yet another plat-
form subscription is an indicator that infrastructural deficits define the daily reality
of science. We should be able to easily store, share, and search for data; be able to
organize and communicate with each other; be able to write and review our work,
but we are hemmed in on all sides by looming tech profiteers and chasms of under-
development.

If the term infrastructure conjures images of highways and plumbing, then surely
digital infrastructure would be flattered at the association. Roughly following Star
and Ruhleder’s (1996) dimensions [211] , by analogy they illustrate many of its
promises and challenges: when designed to, it can make practically impossible things
trivial, allowing the development of cities by catching water where it lives and snaking
it through tubes and tunnels sometimes directly into your kitchen. Its absence or
failure is visible and impactful, as in the case of power outages. There is no guarantee
that it “optimally” satisfies some set of needs for the benefit of the greatest number
of people, as in the case of the commercial broadband duopolies. It exists not only
as its technical reality, but also as an embodied and shared set of social practices, and
so even when it does exist its form is not inevitable or final; as in the case of bottled
water producers competing with municipal tap water on a behavioral basis despite
being dramatically less efficient and more costly. Finally it is not socially or ethically
neutral, and the impact of failure to build or maintain it is not equally shared, as in
the expression of institutional racism that was the Flint, Michigan water crisis [212]
.

Infrastructural deficits are not our inevitable and eternal fate, but the course of in-
frastructuring is far from certain. It is not the case that “scientific digital infrastruc-
ture” will rise from the sea monolithically as a natural result of more development
time and funding, but instead has many possible futures[213] , each with their own
advocates and beneficiaries. Without concerted and strategic development based on
a shared and liberatory ethical framework, science will continue to follow the same
path as other domains of digital technology down the dark road of platform capital-
ism. The prize of owning the infrastructure that the practice of science is built on
is too great, and it is not hard to imagine tech behemoths buying out the emerging
landscape of small scientific-software-as-a-service startups and selling subscriptions
to Science Prime.

The possibility of future capture of nascent infrastructure is still too naive a framing:
operating as obligate brokers of (usually surveillance) data[214, 215, 216] , prestige,
and computational resources naturally relies on displacing the possibility of alter-
native infrastructure. Our predicament is doubly difficult: we both have digital in-
frastructural deficits, but are also being actively deinfrastructured. The harms of de-
infrastructuring are bidirectional, comprising both the missed opportunities from
decades of free knowledge exchange, and the impacts of the informational regime
that exists in its place. One can only imagine what the state of science and medicine
might be if NIH’s 1999 push to displace for-profit journals[217, 218, 219, 220]
had succeeded and we had more than 20 years of infrastructural development built
atop a fundamentally free system of scientific knowledge. Instead, our failure to
seize the digital infrastructure of science has led to a system where what should
be our shared intellectual heritage is yoked to the profit engine of surveillance con-
glomerates (formerly known as publishers) [214, 221] that repackage it along with
a deluge of mined personal data in a circular economy of control [222, 223, 224]
that makes us directly complicit in the worst abuses of informational capitalism
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[225, 226, 227, 228, 229] .

We need to move beyond conceptualizing the problems of scientific infrastructure as
being unique to science, a sighing hope for some future that “might be nice” to have
(built by an always-anonymous “someone else”), but one to be pursued gradually
after staid and cautious scholars are convinced no risk will come to our precious
systems of prestige and peer review. We need to start seeing ours as one of many
stories in the digital enclosure movement where adversarial economic entities take
ownership of basic digital infrastructure and wipe out a domain of knowledge work,
reducing it to a captive market and content farm [216, 230] . We need to see taking
control of our digital infrastructure as essential to the continued existence of science
as we know it.

This paper is an argument thatdecentralizeddigital infrastructure3 is the best means 3 Recently the notion of decentralized digital
infrastructure has been co-opted by a variety of
swindlers and other motivated parties to refer to
blockchain-based technologies like cryptocurren-
cies, decentralized autonomous organizations,
and the like. This work will not discuss them, as
they have not been demonstrated to do anything
that peer-to-peer technology with adjoining social
systems can’t do except use a colossal quantity of
fossil fuels and drain a lot of credulous people’s
bank accounts.

of alleviating the harms of infrastructural deficits and building a digital landscape
that supports, rather than extracts from science. I will draw from several disciplines
and knowledge communities, across and outside academia to articulate a vision of
an infrastructure in three parts: shared data, shared tools, and shared knowl-
edge. These domains reflect three of the dominant modes of digital enclosure pre-
requisite for platform capture: storage, computation, and communication. The
systems we will describe are in conversation with and a continuation of a long his-
tory of reimagining the relationship between these domains for a healthier web (see
eg. [231, 232] ). We depart from it to describe a system of fluid, peer-to-peer so-
cial affiliation and folksonomic linked data with lessons primarily from early wikis
and Wikipedia, the fissures of the semantic web and linked data communities, the
social structure of private bittorrent trackers, and the federation system of Activity-
Pub and the Fediverse. Approaching this problem from science has its constraints
— like the structuring need to rebuild systems of credit assignment — as well as
the powerful opportunity of one of the last systems of labor largely not driven by
profit developing technology and seeding communities that could begin to directly
address the dire, societywide need for digital freedom.

The problems we face are different than they were at the dawn of the internet, but
we can learn from its history: we shouldn’t be waiting for a new journal-like plat-
form, software package, or subscription to save us. We need to build protocols for
communication, interoperability, and self-governance (see, recently [233] ).

I will start with a brief description of what I understand to be the state of our digital
infrastructure and the structural barriers and incentives that constrain its develop-
ment. I will then propose a set of design principles for decentralized infrastructure
and possible means of implementing it informed by prior successes and failures at
building mass digital infrastructure. I will close with contrasting visions of what sci-
ence could be like depending on the course of our infrastructuring, and my thoughts
on how different actors in the scientific system can contribute to and benefit from
decentralization.

I insist that what I will describe is not utopian but is eminently practical — the truly
impractical choice is to do nothing and continue to rest the practice of science on
a pyramid scheme [234] of underpaid labor. With a bit of development to inte-
grate and improve the tools, every class of technology I propose here already
exists and is widely used. A central principle of decentralized systems is embrac-
ing heterogeneity: harnessing the power of the diverse ways we do science instead of
constraining them. Rather than a patronizing argument that everyone needs to fun-
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damentally alter the way they do science, the systems that I describe are specifically
designed to be easily incorporated into existing practices and adapted to variable
needs. In this way I argue decentralized systems are more practical than the dream
that any one system will be capable of expanding to the scale of all science — and
as will hopefully become clear, inarguably more powerful than a disconnected sea of
centralized platforms and services.

An easy and common misstep is to categorize this as solely a technical challenge. In-
stead the challenge of infrastructure is also social and cultural — it involves embed-
ding any technology in a set of social practices, a shared belief that such technology
should exist, that its form is not neutral, and a sense of communal valuation and
purpose that sustains it [235] .

The social and technical perspectives are both essential, but make some conflicting
demands on the construction of the piece: Infrastructuring requires considering the
interrelatedness and mutual reinforcement of the problems to be addressed, rather
than treating them as isolated problems that can be addressed piecemeal with a new
package or by founding a new journal alternative. Such a broad scope trades off with
a detailed description of the relevant technology and systems, but a myopic techno-
zealotry that does not examine the social and ethical nature of scientific practice
risks reproducing or creating new sources of harm. That, and techno-solutionism
never works anyway. As a balance I will not be proposing a complete technical spec-
ification or protocol, but describing the general form of the tools and some existing
examples that satisfy them; I will not attempt a full history or treatment of the prob-
lem of infrastructuring, but provide enough to motivate the form of the proposed
implementations.

My understanding of this problem is, of course, uncorrectably structured by my
training largely centered in systems neuroscience and my position as an early career
researcher (ECR). While the core of my argument is intended to be a sketch compat-
ible with sciences and knowledge systems generally, my examples will sample from,
and my focus will skew to my experience. In many cases, my use of “science” or “sci-
entist” could be “neuroscience” or “neuroscientist,” but I will mostly use the for-
mer to avoid the constant context switches. This document is also an experiment
in public collaboration on a living scientific document: to try and ease our way out
of disciplinary tunnelvision, we invite annotation and contribution with no lower
bound — if you’d like to add or correct a sentence or two (or a page or ten), you’re
welcome as coauthor. I ask the reader for a measure of patience for the many ways
this argument requires elaboration and modification for distant fields.



9
The State of Things
9.1 The Costs of Infrastructure Deficits

A diagnosis of digital infrastructure deficits gives a common framework to consider
many technical and social harms in scientific work that are typically treated sepa-
rately, and allows us to problematize other symptoms have become embedded as
norms.

I will list some of the present costs to give a sense of the scale of need, as well as scope
for the problems we intend to address here. These lists are grouped into rough and
overlapping categories, but make no pretense at completeness.

Impacts on the daily experience of researchers include:

• A prodigious duplication and dead-weight loss of labor as each lab, and some-
times each person within each lab, will reinvent basic code, tools, and practices
from scratch. Literally it is the inefficiency of the Harberger’s triangle in the sup-
ply and demand system for scientific infrastructure caused by inadequate supply.
Labs with enough resources are forced to pay from other parts of their grants to
hire professional programmers and engineers to build the infrastructure for their
lab1, but most just operate on a purely amateur basis. Many PhD students will 1 (and usually their lab or institute only)
spend the first several years of their degree re-solving already-solved problems,
chasing the tails of the wrong half-readable engineering whitepapers, in their 6th
year finally discovering the technique that they actually needed all along. That’s
not an educational or training model, it’s the effect of displacing the undone la-
bor of unbuilt infrastructure on vulnerable graduate workers almost always paid
poverty wages.

• At least the partial cause of the phenomenon where “every scientist needs to be a
programmer now” as people who aren’t particularly interested in being program-
mers — which is fine and normal — need to either suffer through code written
by some other unlucky amateur or learn several additional disciplines in order to
do the work of the one they chose.

• A great deal of pain and alienation for early- career researchers not previously
trained in programming before being thrown in the deep end. Learning data
hygiene practices like backup, annotation, etc. “the hard way” through some
catastrophic loss is accepted myth in much of science. At some scale all the very
real and widespread pain, guilt, and shame felt by people who had little choice
but to reinvent their own data management system must be recognized as an
infrastructural, rather than a personal problem.

• The high cost of “openness” and the dearth of mass-scale collaboration. It is
still rare to publish full, raw data and analysis code, often because the labor of
cleaning it is too great. We can’t expect openness from everyone while it is still
so hard. The “Open science” movement, roughly construed, has reached a few
hard limits from present infrastructure that have forced its energy to leak from

https://en.wikipedia.org/wiki/Deadweight_loss#Harberger's_triangle
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the sides as bullying leaderboards or sets of symbols that are mere signifiers of
cultural affiliation to openness. “Openness” is not a uniform or universal goal for
all science, and even the framing of openness as inspection of results collected and
analyzed in private isolation illustrates how infrastructural deficits bound our
imagination. Our dreams can be bigger than being able to police each other’s
data, towards a more continuously collaborative process that renders the need
for post-hoc openness irrelevant with mutually beneficial information sharing
baked into every stage.

Impacts on the system of scientific inquiry include:

• A profoundly leaky knowledge acquisition system where entire PhDs worth of
data can be lost and rendered useless when a student leaves a lab and no one
remembers how to access the data or how it’s formatted.

• The inevitability of continual replication crises because it is often literally impos-
sible to replicate an experiment that is done on a rig that was built one time, used
entirely in-lab code, and was never documented

• Reliance on communication platforms and knowledge systems that aren’t de-
signed to, and don’t come close to satisfying the needs of scientific communi-
cation. In the absence of some generalized means of knowledge organization,
scientists ask the void2 for advice or guidance from anyone that algorithmically 2 (Twitter)
stumbles by. Often our best recourse is to make a Slack about it, which is inca-
pable of producing a public, durable, and cumulative resource: and so the same
questions will be asked again… and again…

• A perhaps doomed intellectual endeavor as we attempt to understand the stag-
gering complexity of the brain by peering at it through the camera obscura of
just the most recent data you or your lab have collected rather than being able
to index across the many measurements of the same phenomena. The unneces-
sary reduplication of experiments becomes not just a methodological limitation,
but an ethical catastrophe as researchers have little choice but to abandon the
elemental principle of sacrificing as few animals as possible.

• A near-absence of semantic or topical organization of research that makes cu-
mulative progress in science probabilistic at best, and subject to the malformed
incentives of publication and prestige gathering at worst. Since engaging with
prior literature is a matter of manually reconstructing a caricature of a field of
work in every introduction, continuing lines of inquiry or responding to con-
flicting results is strictly optional.

• A hierarchy of prestige that devalues the labor of many groups of technicians,
animal care workers, and so on. Authorship is the coin of the realm, but many
workers that are fundamental to the operation of science only receive the credit
of an acknowledgement. We need a system to value and assign credit for the im-
mense amount of technical and practical knowledge and labor they contribute.

Impacts on the relationship between science and society:

• An insular system where the inaccessibility of all the “contextual” knowledge
[236, 166] that doesn’t have a venue for sharing but is necessary to perform ex-
periments, like “how to build this apparatus,” “what kind of motor would work
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here,” etc. is a force that favors established and well-funded labs who can rely on
local knowledge and hiring engineers/etc. and excludes new, lesser-funded labs at
non-ivy institutions. The concentration of technical knowledge magnifies the in-
equity of strongly skewed funding distributions such that the most well-funded
labs can do a completely different kind of science than the rest of us, turning the
positive-feedback loop of funding begetting funding ever faster.

• An absconscion with the public resources we are privileged enough to receive,
where rather than returning the fruits of the many technical challenges we are
tasked with solving to the public in the form of data, tools, collected practical
knowledge, etc. we largely return papers. Since those papers are often impene-
trable outside of their discipline or paywalled outside of academia, we multiply
the above impacts of labor duplication and knowledge inaccessibility by the scale
of society.

• The complicity of scientists in rendering our collective intellectual heritage noth-
ing more than another regiment in the ever-advancing armies of platform capital-
ism. If our highest aspirations are to shunt all our experiments, data, and analysis
tools onto Amazon Web Services, our failure of imagination will be responsible
for yet another obligate funnel of wealth into the system of extractive platforms
that dominate the flow of global information. For ourselves, we stand to have
the practice of science filleted at the seams into a series of mutually incompatible
subscription services. For society, we squander the chance for one of the very
few domains of non-economic labor to build systems to recollectivize the basic
infrastructure of the internet: rather than providing an alternative to the infor-
mation overlords and their digital enclosure movement, we will be run right into
their arms.

Considered separately, these are serious problems, but together they are a damning
indictment of our role as stewards of our corner of the human knowledge project.

We arrive at this situation not because scientists are lazy and incompetent, but be-
cause we are embedded in a system of mutually reinforcing disincentives to cumu-
lative infrastructure development. Our incentive systems are, in turn, coproductive
with a raft of economically powerful entities that would really prefer owning it all
themselves, thanks. Put bluntly, “we are dealing with a massively entrenched set of
institutions, built around the last information age and fighting for its life” [210]

There is, of course, an enormous amount of work being done by researchers and
engineers on all of these problems, and a huge amount of progress has been made
on them. My intention is not to shame or devalue anyone’s work, but to try and
describe a path towards integrating it and making it mutually reinforcing.

Before proposing a potential solution to some of the above problems, it is important
to motivate why they haven’t already been solved, or why their solution is not nec-
essarily imminent. To do that, we need a sense of the social and technical challenges
that structure the development of our tools.

9.2 (Mis)incentives in Scientific Software

The incentive systems in science are complex, subject to infinite variation every-
where, so these are intended as general tendencies rather than statements of irrevo-
cable and uniform truth.
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9.2.1 Incentivized Fragmentation

Scientific software development favors the production of many isolated, single-purpose
software packages rather than cumulative work on shared infrastructure. The pri-
mary means of evaluation for a scientist is academic reputation, primarily opera-
tionalized by publications, but a software project will yield a single paper (if any).
Traditional publications are static units of work that are “finished” and frozen in
time, but software is never finished: the thousands of commits needed to maintain
and extend the software are formally not a part of the system of academic reputation.

Howison & Herbsleb described this dynamic in the context of BLAST3 3 “Basic Local Alignment Search Tool” - a tool
to compare genetic or protein sequences to find
potential matches or analogues.In essence we found that BLAST innovations from those motivated to improve

BLAST by academic reputation are motivated to develop and to reveal, but not
to integrate their contributions. Either integration is actively avoided to main-
tain a separate academic reputation or it is highly conditioned on whether or not
publications on which they are authors will receive visibility and citation. [237]

For an example in Neuroscience, one can browse the papers that cite the DeepLab-
Cut paper [238] to find hundreds of downstream projects that make various exten-
sions and improvements that are not integrated into the main library. While the
alternative extreme of a single monolithic ur-library is also undesirable, working in
fragmented islands makes infrastructure a random walk instead of a cumulative ef-
fort.

After publication, scientists have little incentive to maintain software outside of
the domains in which the primary contributors use it, so outside of the most-used
libraries most scientific software is brittle and difficult to use [239, 240, 241] .

Since the reputational value of a publication depends on its placement within a jour-
nal and number of citations (among other metrics), citation practices for scientific
software are far from uniform and universal, and relatively few “prestige” journals
publish software papers at all, the incentive to write scientific software in the first
place is low compared to its near-universal use [242] .

9.2.2 Domain-Specific Silos

When funding exists for scientific infrastructure development, it typically comes in
the form of side effects from, or administrative supplements to research grants. The
NIH describes as much in their Strategic Plan for Data Science [243] :

from 2007 to 2016, NIH ICs used dozens of different funding strategies to sup-
port data resources, most of them linked to research-grant mechanisms that pri-
oritized innovation and hypothesis testing over user service, utility, access, or ef-
ficiency. In addition, although the need for open and efficient data sharing is
clear, where to store and access datasets generated by individual laboratories—
and how to make them compliant with FAIR principles—is not yet straightfor-
ward. Overall, it is critical that the data-resource ecosystem become seamlessly
integrated such that different data types and information about different organ-
isms or diseases can be used easily together rather than existing in separate data
“silos” with only local utility.

The National Library of Medicine within the NIH currently lists 122 separate databases
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in its search tool, each serving a specific type of data for a specific research com-
munity. Though their current funding priorities signal a shift away from domain-
specific tools, the rest of the scientific software system consists primarily of tools and
data formats purpose-built for a relatively circumscribed group of scientists. Every
field has its own challenges and needs for software tools, but there is little incentive
to build tools that serve as generalized frameworks to integrate them.

9.2.3 “The Long Now” of Immediacy vs. Idealism

Digital infrastructure development takes place at multiple timescales simultaneously
— from the momentary work of implementing it; through longer timescales of plan-
ning, organization, and documenting; to the imagined indefinite future of its use
— what Ribes and Finholt call “The Long Now. [244] ” Infrastructural projects
constitutively need to contend with the need for immediately useful results vs. gen-
eral and robust systems; the need to involve the effort of skilled workers vs. the un-
certainty of future support; the balance between stability and mutability; and so
on. The tension between hacking something together vs. building something sus-
tainable for future use is well-trod territory in the hot-glue and exposed wiring of
systems neuroscience rigs.

Deinfrastructuring divides the incentives and interests of junior and senior researchers.
ECRs might be interested in developing tools they’ll use throughout their careers,
but given the pressure to establish their reputation with publications rarely have
the time to develop something fully. The time pressure never ends, and established
researchers also need to push enough publications through the door to be able to
secure the next round of funding. The time preference of scientific software devel-
opment is thus very short: hack it together, get the paper out, we’ll fix it later.

The constant need to produce software that does something in the context of scien-
tific programming which largely lacks the institutional systems and expert mentor-
ship needed for well-architected software means that most programmers never have
a chance to learn best practices commonly accepted in software engineering. As a
consequence, a lot of software tools are developed by near-amateurs with no formal
software training, contributing to their brittleness [245] .

The problem of time horizon in development is not purely a product of inexperi-
ence, and a longer time horizon is not uniformly better. We can look to the history
of the semantic web, a project that was intended to bridge human and computer-
readable content on the web, for cautionary tales. In the semantic web era, thou-
sands of some of the most gifted programmers and some of the original architects
of the internet worked with an eye to the indefinite future, but the raw idealism and
neglect of the pragmatic reality of the need for software to do something drove many
to abandon the effort (bold is mine, italics in original):

But there was no use of it. I wasn’t using any of the technologies for anything,
except for things related to the technology itself. The Semantic Web is utterly
inbred in that respect. The problem is in the model, that we create this metafor-
mat, RDF, and then the use cases will come. But they haven’t, and they won’t.
Even the genealogy use case turned out to be based on a fallacy. The very few
use cases that there are, such as Dan Connolly’s hAudio export process, don’t
justify hundreds of eminent computer scientists cranking out specification after
specification and API after API.

https://eresources.nlm.nih.gov/nlm_eresources/
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When we discussed this on the Semantic Web Interest Group, the conversation
kept turning to how the formats could be fixed to make the use cases that I out-
lined happen. “Yeah, Sean’s right, let’s fix our languages!” But it’s not the lan-
guages which are broken, except in as much as they are entirely broken: be-
cause it’s the mentality of their design which is broken. You can’t, it has
turned out, make a metalanguage like RDF and then go looking for use cases.
We thought you could, but you can’t. It’s taken eight years to realise. [246]

Developing digital infrastructure must be both bound to fulfilling immediate, in-
cremental needs as well as guided by a long-range vision. The technical and so-
cial lessons run in parallel: We need software that solves problems people actually
have, but can flexibly support an eventual form that allows new possibilities. We
need a long-range vision to know what kind of tools we should build and which we
shouldn’t, and we need to keep it in a tight loop with the always-changing needs of
the people it supports.

In short, to develop digital infrastructure we need to be strategic. To be strategic we
need a plan. To have a plan we need to value planning as work. On the valuation of
this kind of work, Ribes and Finholt are instructive:

“On the one hand, I know we have to keep it all running, but on the other, LTER
is about long-term data archiving. If we want to do that, we have to have the
time to test and enact new approaches. But if we’re working on the to-do lists,
we aren’t working on the tomorrow-list” (LTER workgroup discussion 10/05).

The tension described here involves not only time management, but also the dif-
fering valuations placed on these kinds of work. The implicit hierarchy places
scientific research first, followed by deployment of new analytic tools and re-
sources, and trailed by maintenance work. […] While in an ideal situation devel-
opment could be tied to everyday maintenance, in practice, maintenance work
is often invisible and undervalued. As Star notes, infrastructure becomes visible
upon breakdown, and only then is attention directed at its everyday workings
(1999). Scientists are said to be rewarded for producing new knowledge, devel-
opers for successfully implementing a novel technology, but the work of main-
tenance (while crucial) is often thankless, of low status, and difficult to track.
How can projects support the distribution of work across research, development, and
maintenance? [244]

9.2.4 “Neatness” vs “Scruffiness”

Closely related to the tension between “Now” and “Later” is the tension between
“Neatness” and “Scruffiness.” Lindsay Poirier traces its reflection in the semantic
web community as the way that differences in “thought styles” result in different
“design logics” [247] . On the question of how to develop technology for represent-
ing the ontology of the web – the system of terminology and structures with which
everything should be named – there were (very roughly) two camps. The “neats”
prioritized consistency, predictability, uniformity, and coherence – a logically com-
plete and formally valid System of Everything. The “scruffies” prioritized local sys-
tems of knowledge, expressivity, “believing that ontologies will evolve organically as
everyday webmasters figure out what schemas they need to describe and link their
data. [247] ”
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This tension is as old as the internet, where amidst the dot-com bubble a telecom
spokesperson lamented that the internet wasn’t controllable enough to be profitable
because “it was devised by a bunch of hippie anarchists.” [248] The hippie anar-
chists probably agreed, famously rejecting “kings, presidents and voting” in favor
of “rough consensus and running code” during an attempted ISO coup to replace
TCP/IP with a proprietary protocol. Clearly, the difference in thought styles has an
unsubtle relationship with beliefs about who should be able to exercise power and
what ends a system should serve [249] .

Figure 9.1: A slide from David Clark’s 1992
“Views of the Future”[3] that contrasts differing
visions for the development process of the future of
the internet. The struggle between engineered
order and wild untamedness is summarized
forcefully as “We reject: kings, presidents and
voting. We believe in: rough consensus and
running code”

Practically, the differences between these thought communities impact the tools
they build. Aaron Swartz put the approach of the “neat” semantic web architects
the way he did:

Instead of the “let’s just build something that works” attitude that made the Web
(and the Internet) such a roaring success, they brought the formalizing mindset
of mathematicians and the institutional structures of academics and defense con-
tractors. They formed committees to form working groups to write drafts of
ontologies that carefully listed (in 100-page Word documents) all possible things
in the universe and the various properties they could have, and they spent hours
in Talmudic debates over whether a washing machine was a kitchen appliance or
a household cleaning device.

With them has come academic research and government grants and corpo-
rate R&D and the whole apparatus of people and institutions that scream
“pipedream.” And instead of spending time building things, they’ve convinced
people interested in these ideas that the first thing we need to do is write standards.
(To engineers, this is absurd from the start—standards are things you write after
you’ve got something working, not before!) [197]

The outcomes of this cultural rift are subtle, but the broad strokes are clear: the
“scruffies” largely diverged into the linked data community, which has taken some
of the core semantic web technology like RDF, OWL, and the like, and developed a

https://en.wikipedia.org/wiki/Dot-com_bubble
https://www.iso.org/standard/35872.html
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broad range of downstream technologies that have found purchase across informa-
tion sciences, library sciences, and other applied domains4. The linked data develop- 4 This isn’t a story of “good people” and “bad

people,” as a lot of the linked data technology
also serves as the backbone for abusive technology
monopolies like google’s acquisition of Freebase
[250] and the profusion of knowledge graph-based
medical platforms.

ers, starting by acknowledging that no one system can possibly capture everything,
build tools that allow expression of local systems of meaning with the expectation
and affordances for linking data between these systems as an ongoing social process.

The vision of a totalizing and logically consistent semantic web, however, has largely
faded into obscurity. One developer involved with semantic web technologies (who
requested not be named), captured the present situation in their description of a
still-active developer mailing list:

I think that some people are completely detached from practical applications of
what they propose. […] I could not follow half of the messages. these guys seem
completely removed from our plane of existence and I have no clue what they are
trying to solve.

This division in thought styles generalizes across domains of infrastructure, though
outside of the linked data and similar worlds the dichotomy is more frequently be-
tween “neatness” and “people doing whatever” – with integration and interoperabil-
ity becoming nearly synonymous with standardization. Calls for standardization
without careful consideration and incorporation of existing practice have a familiar
cycle: devise a standard that will solve everything, implement it, wonder why people
aren’t using it, funding and energy dissipates, rinse, repeat5. The difficulty of scaling 5 There is, of course, an XKCD for that to which

we make obligatory reference: https://xkcd.com/
927/

an exacting vision of how data should be formatted, the tools researchers should use
for their experiments, and so on is that they require dramatic and sometimes total
changes to the way people do science. The alternative is not between standardiza-
tion and chaos, but a potential third way is designing infrastructures that allow the
diversity of approaches, tools, and techniques to be expressed in a common frame-
work or protocol along with the community infrastructure to allow the continual
negotiation of their relationship.

9.2.5 Taped-on Interfaces: Open-Loop User Testing

The point of most active competition in many domains of commercial software is
the user interface and experience (UI/UX). To compete, software companies will
exhaustively user-test and refine them with pixel precision to avoid any potential
customer feeling even a thimbleful of frustration. Scientific software development
is largely disconnected from usability testing, as what little support exists is rarely
tied to it. This, combined with the preponderance of semi-amateurs and above in-
centives for developing new packages – and thus reduplicating the work of interface
development – make it perhaps unsurprising that most scientific software is hard to
use!

I intend the notion of “interface” in an expansive way: In addition to a graphical
user interface (GUI) or set of functions and calling conventions exposed to the end-
user, I am referring generally to all points of contact with users, developers, and
other software. Interfaces are intrinsically social, and include the surrounding doc-
umentation and experience of use — part of using software is being able to figure
out how to use it! The favored design idiom of scientific software is the black box: I
implemented an algorithm of some kind, here are the two or three functions needed
to use it, but beneath the surface there be dragons.

https://xkcd.com/927/
https://xkcd.com/927/
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Ideally, software would be designed with developer interfaces and documentation at
multiple scales of complexity to enable clean entrypoints for developers with differ-
ing levels of skill and investment to contribute. When this kind of design and docu-
mentation is underdeveloped, even widely used projects with excellent top-level in-
terfaces like poetry struggle to respond to the pile of issues thousands deep as even
users who have spent time reading the source have difficulty understanding what
exactly needs to be fixed and maintainers have to spend their time triaging them and
manually re-explaining the software hundreds of times6. 6 For one example of many, see Issue #3855, where

several users try to make sense of the way poetry
resolves packages from multiple sources — a
conversation that has been happening for more
than a year at the time of writing across multiple
related issues.

Additionally, it would include interfaces for use and integration with other software
— or APIs. While the term “API” most commonly refers to web APIs, the term
generally refers to the means by which other programs can interact with a given pro-
gram. All programs have some limit to their function, the question is how other
programs are expected to handle them. One particularly successful approach to pro-
gram interface design is the Unix philosophy as articulated by Doug McIlroy and
colleagues [251] — which was originally designed to help build research software.
Its first “make each program do one thing well” and second “expect the output of
every program to become the input to another, as yet unknown, program” princi-
ples inspired a set of simple tools that can be composed together for complex tasks.
When a program is monolithic and isn’t designed to provide access to its compo-
nent parts, it becomes difficult to reuse in downstream projects, potentially reskin
with a more friendly user interface, and ultimately more likely to be a dead-end in a
system of shared infrastructure.

Without care given to any of these types of interfaces, the barrier to use is likely to
remain high, the community of co-developers is likely to remain small, and the labor
they expend is less likely to be useful outside that single project. This, in turn, closes
the loop with incentives to develop new packages and makes another vicious cycle
reinforcing fragmentation7. 7 Incentivized to develop new packages -> need to

reinvent interfaces -> hard to develop and extend ->
incentivized to develop new packages

9.2.6 Platforms, Industry Capture, and the ProfitMotive

Publicly funded science is an always-irresistable golden goose for private industry.
The fragmented interests of scientists and the historically light touch of funding
agencies on encroaching privatization means that if some company manages to cap-
ture and privatize a corner of scientific practice they are likely to keep it. Industry
capture has been thoroughly criticized in the context of the journal system (eg. re-
cently, [233] ), and that criticism should extend to the rest of our infrastructure as
information companies seek to build a for-profit platform system that spans the sci-
entific workflow (eg. [252] ). The mode of privatization of scientific infrastructure
follows the broader software market as a proliferation of software as a service (SaaS),
from startups to international megacorporations, that rent access to some, typically
proprietary software without selling the software itself.

While in isolation SaaS can make individual components of the infrastructural land-
scape easier to access — and even free!!* — the business model is fundamentally in-
compatible with integrated and accessible infrastructure. The SaaS model derives
revenue from subscription or use costs, often operating as “freemium” models that
make some subset of its services available for free. Even in freemium models, though,
the business model requires that some functionality of the platform is enclosed and
proprietary. To keep the particular domain of enclosure viable as a profit stream,
the proprietor needs to actively defend against competitors as well as any technol-

https://python-poetry.org/
https://github.com/python-poetry/poetry/issues
https://github.com/python-poetry/poetry/issues/3855
https://github.com/python-poetry/poetry/discussions/4137#discussioncomment-2320644
https://github.com/python-poetry/poetry/discussions/4137#discussioncomment-2320644
https://en.wikipedia.org/wiki/Web_API
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ogy that might fill the need for the proprietary technology8 (See a more thorough 8 eg. see the complaint in State of Texas et al. v.
Google that alleges Google rigs ad markets designed
to lessen its dominance and uses its control over
Chrome and Android to create a single, always-on
tracking ecosystem owned only by them [253]

treatment of platform capitalism in science in [213] )

As isolated services, one can imagine the practice of science devolving along a similar
path as the increasingly-fragmented streaming video market: to do my work I need
to subscribe to a data storage service, a cloud computing service, a platform to host
my experiments, etc. For larger software platforms, however, vertical integration of
multiple complementary services makes their impact on infrastructure more insidi-
ous. Locking users into more and more services makes for more and more revenue,
which encourages platforms to be as mutually incompatible as they can get away
with [254] . To encourage adoption, platforms that can offer multiple services may
offer one of the services – say, data storage – for free, forcing the user to use the
adjoining services – say, a cloud computing platform.

Since these platforms are often subsidiaries of information industry monopolists,
scientists become complicit in their often profoundly unethical behavior of by fun-
neling millions of dollars into them. Longterm, unconditional funding of wildly
profitable journals has allowed conglomerates like Elsevier to become sprawling surveil-
lance companies [255, 214] that are sucking as much data up as they can to mar-
ket derivative products like algorithmic ranking of scientific productivity [222] and
making data sharing agreements with ICE [226] . Or our reliance on AWS and the
laundry list of human rights abuses by Amazon [256] . In addition to lock-in, de-
pendence on a constellation of SaaS allows the opportunity for platform-holders
to take advantage of their limitations and sell us additional services to make up for
what the other ones purposely lack — for example Elsevier has taken advantage of our
dependence on the journal system and its strategic disorganization to sell a tool for
summarizing trending research areas for tailoring maximally-fundable grants [257]
.

Funding models and incentive structures in science are uniformly aligned towards
the platformatization of scientific infrastructure. Aside from the corporate dou-
blespeak “technology transfer” rhetoric that pervades the neoliberal university, the
relative absence of major funding opportunities for scientific software developers
competitive with the profit potential from “industry” often leaves it as the only vi-
able career path. The preceding structural constraints on local infrastructural de-
velopment strongly incentivize labs and researchers to rely on SaaS that provides a
readymade solution to specific problems. Distressingly, rather than supporting in-
frastructural development that would avoid obligate payments to platform-holders,
funding agencies seem all too happy to lean into them (emphases mine):

NIH will leverage what is available in the private sector, either through
strategic partnerships or procurement, to create a workable Platform as a Ser-
vice (PaaS) environment. […] NIH will partner with cloud-service providers for
cloud storage, computational, and related infrastructure services needed to facil-
itate the deposit, storage, and access to large, high-value NIH datasets. […]

NIH’s cloud-marketplace initiative will be the first step in a phased operational
framework that establishes a SaaS paradigm for NIH and its stakeholders.
(-NIH Strategic Plan for Data Science, 2018 [243] )

The articulated plan being to pay platform holders to house data while also pay-
ing for the labor to maintain those databases veers into parody, haplessly building
another triple-pay industry [258] into the economic system of science — one can
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hardly wait until they have the opportunity to rent their own data back with a monthly
subscription. This isn’t a metaphor: the STRIDES program, with the official sub-
domain cloud.nih.gov, has been authorized to pay $85 million to cloud providers
since 2018. In exchange, NIH hasn’t received any sort of new technology, but “ex-
tramural” scientists receive a maximum discount of 25% on cloud storage and “data
egress” fees as well as plenty of training on how to give control of the scientific pro-
cess to platform giants [259] 9. Without exaggeration, we are paying them to let us 9 Their success stories tell the story of platform

non-integration where scientists have to handbuild
new tools to manage their data across multiple
cloud environments: “We have been storing data in
both cloud environments because we wanted the
ecosystem we are creating to work on both clouds”
[260]

pay for something that makes it so we need to pay them more later.

It is unclear to me whether this is the result of the cultural hegemony of platform
capitalism narrowing the space of imaginable infrastructures, industry capture of
the decision-making process, or both, but the effect is the same in any case.

9.2.7 Protection of Institutional and Economic Power

Aside from information industries, infrastructural deficits are certainly not without
beneficiaries within science — those that have already accrued power and status.

Structurally, the adoption of SaaS on a wide scale necessarily sacrifices the goals of
an integrated mass infrastructure as the practice of research is carved into small, mar-
ketable chunks within vertically integrated technology platforms. Worse, it stands
to amplify, rather than reduce, inequities in science, as the labs and institutes that
are able to afford the tolls between each of the weigh stations of infrastructure are
able to operate more efficiently — one of many positive feedback loops of inequity.

More generally, incentives across infrastructures are often misaligned across strata
of power and wealth. Those at the top of a power hierarchy have every incentive
to maintain the fragmentation that prevents people from competing — hopefully
mostly unconsciously via uncritically participating in the system rather than mali-
ciously reinforcing it.

This poses an organizational problem: the kind of infrastructure that unwinds plat-
form ownership is not only unprofitable, it’s anti-profitable – making it impos-
sible to profit from its domain of use. That makes it difficult to rally the kind of
development and lobbying resources that profitable technology can, requiring orga-
nization based on ethical principles and a commitment to sacrifice control in order
to serve a practical need.

The problem is not insurmountable, and there are strategic advantages to decentral-
ized infrastructure and its development within science. Centralized technologies
and companies might have more concerted power, but we have numbers and can
make tools that let us combine small amounts of labor from many people. We of-
ten start (and end) our dreams of infrastructure with the belief that they will nec-
essarily cost a lot of money, but that’s propaganda. Of course development isn’t
free, but the cost of decentralized technologies is far smaller than the vast sums of
money funneled into industry profits, labor hours spent compensating for the de-
signed inefficiencies of the platform model, and the development of a fragmented
tool ecosystem built around them.

Science, as one of few domains of non-economic labor, has the opportunity to be a
seed for decentralized technologies that could broadly improve not only the health
of scientific practice, but the broader information ecosystem. We can develop a plan
and mobilize to make use of our collective expertise to build tools that have no busi-

https://web.archive.org/web/20210729131920/https://cloud.nih.gov/
https://web.archive.org/web/20211006003547/https://cloud.nih.gov/enrollment/account-type/
https://web.archive.org/web/20211006003547/https://cloud.nih.gov/enrollment/account-type/
https://www.snsi.info/
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ness model and no means of development in commercial domains — we just need
to realize what’s at stake and agree that the health of science is more important than
the convenience of the cloud10 or which journal our papers go into. 10 Though the system of engineered helpless that

convinces us that we’re incapable of managing our
own web infrastructure is not actually as reliable
and seamless as it claims, as the long history of
dramatic outages at AWS can show us [261, 262]9.3 The Ivies, Institutes, and “The Rest of Us”

Given these constraints, who can build new digital infrastructure? Constraints, mo-
tivations, and strategies all depend on the circumstance of those doing the develop-
ment. The undone work of infrastructure is being nibbled at around the edges11 11 aka doing hard development work in sometimes

adverse conditions.by several different kinds of organization already ranging in scale and structure. A
short survey to give us some notion of how we should seek to organize infrastructure
building:

9.3.1 Institutional Core Facilities

Centralized “core” facilities are maybe the most typical form of infrastructure devel-
opment and resource sharing at the level of departments and institutions. These fa-
cilities can range from minimal to baroque extravagance depending on institutional
resources and whatever complex web of local history brought them about.

A subproject within a PNI Systems Core grant echoes a lot of the thoughts here,
particularly regarding effort duplication12: 12 Thanks a lot to the one-and-only brilliant

Dr. Eartha Mae Guthman for suggesting looking
at the BRAIN initiative grants as a way of getting
insight on core facilities.

Creating an Optical Instrumentation Core will address the problem that much
of the technical work required to innovate and maintain these instruments has
shifted to students and postdocs, because it has exceeded the capacity of existing
staff. This division of labor is a problem for four reasons: (1) lab personnel often
do not have sufficient time or expertise to produce the best possible results, (2) the
diffusion of responsibility leads people to duplicate one another’s efforts, (3) re-
searchers spend their time on technical work at the expense of doing science, and
(4) expertise can be lost as students and postdocs move on. For all these reasons,
we propose to standardize this function across projects to improve quality con-
trol and efficiency. Centralizing the design, construction, maintenance, and sup-
port of these instruments will increase the efficiency and rigor of our microscopy
experiments, while freeing lab personnel to focus on designing experiments and
collecting data.

While core facilities are an excellent way of expanding access, reducing redundancy,
and standardizing tools within an institution, as commonly structured they can dis-
place work spent on efforts that would be portable outside of the institution. Elite
institutions can attract the researchers with the technical knowledge to develop the
instrumentation of the core and infrastructure for maintaining it, but this develop-
ment is only occasionally made usable by the broader public. The Princeton data
science core is an excellent example of a core facility that does makes its software in-
frastructure development public13, which they should be applauded for, but also 13 Project Summary: Core 2, Data Science […]

In addition, the Core will build a data science
platform that stores behavior, neural activity, and
neural connectivity in a relational database that
is queried by the DataJoint language. […] This
data-science platform will facilitate collaborative
analysis of datasets by multiple researchers within
the project, and make the analyses reproducible
and extensible by other researchers. […] NIH
RePORTER

illustrative of the problems with a core-focused infrastructure project. For an ex-
ternal user, the documentation and tutorials are incomplete – it’s not clear to me
how one would set this up for my institute, lab, or data, and there are several places
of hard-coded Princeton-specific values that I am unsure how exactly to adapt14. I

14 Though again, this project is exemplary, built
by friends, and would be an excellent place to start
extending towards global infrastructure.

would consider this example a high-water mark, and the median openness of core

https://reporter.nih.gov/project-details/9444124#sub-Projects
https://projectreporter.nih.gov/project_info_details.cfm?aid=9444124
https://github.com/BrainCOGS
https://projectreporter.nih.gov/project_info_description.cfm?aid=9444126&icde=0
https://projectreporter.nih.gov/project_info_description.cfm?aid=9444126&icde=0
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infrastructure falls far below it. I was unable to find an example of a core facility that
maintained publicly-accessible documentation on the construction and operation
of its experimental infrastructure or the management of its facility.

This might be unsurprising given the economic structure of most core facilities: an
institution pays for a core to benefit the institution, and downstream public benefits
are a nice plus but not high up in the list of concerns (if present at all). Core facilities
are thus unlikely to serve as the source of mass infrastructure, but they do serve as a
point of local coordination within institutions, and so given some larger means of
coordination may still be useful.

9.3.2 Centralized Institutes

Outside of universities, the Allen Brain Institute is perhaps the most impactful re-
flection of centralization in neuroscience. The Allen Institute has, in an impressively
short period of time, created several transformative tools and datasets, including
its well-known atlases [263] and the first iteration of its Observatory project which
makes a massive, high-quality calcium imaging dataset of visual cortical activity avail-
able for public use. They also develop and maintain software tools like their SDK
and Brain Modeling Toolkit (BMTK), as well as a collection of hardware schematics
used in their experiments. The contribution of the Allen Institute to basic neuro-
scientific infrastructure is so great that, anecdotally, when talking about scientific
infrastructure it’s not uncommon for me to hear something along the lines of “I
thought the Allen was doing that.”

Though the Allen Institute is an excellent model for scale at the level of a single or-
ganization, its centralized, hierarchical structure cannot (and does not attempt to)
serve as the backbone for all neuroscientific infrastructure. Performing single (or
a small number of, as in its also-admirable OpenScope Project) carefully controlled
experiments a huge number of times is an important means of studying constrained
problems, but is complementary with the diversity of research questions, model or-
ganisms, and methods present in the broader neuroscientific community.

Christof Koch, its director, describes the challenge of centrally organizing a large
number of researchers:

Our biggest institutional challenge is organizational: assembling, managing, en-
abling and motivating large teams of diverse scientists, engineers and technicians
to operate in a highly synergistic manner in pursuit of a few basic science goals
[264]

These challenges grow as the size of the team grows. Our anecdotal evidence sug-
gests that above a hundred members, group cohesion appears to become weaker
with the appearance of semi-autonomous cliques and sub-groups. This may re-
late to the postulated limit on the number of meaningful social interactions hu-
mans can sustain given the size of their brain [265]

These institutes too are certainly helpful in building core technologies for the field,
but they aren’t necessarily organized for developing mass-scale infrastructure. They
reflect the capabilities and needs of the institute itself, which are likely to be radically
different than a small lab. They can build technologies on a background of expensive
cloud storage and computation and rely on a team of engineers to implement and

http://observatory.brain-map.org/
https://allensdk.readthedocs.io/en/latest/
https://alleninstitute.github.io/bmtk/
https://portal.brain-map.org/explore/toolkit/hardware
https://alleninstitute.org/what-we-do/brain-science/news-press/articles/three-collaborative-studies-launch-openscope-shared-observatory-neuroscience
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maintain them. So while the tools they make are certainly usefulwe shouldn’t count
on them to build the systems we need for scientists at large.

9.3.3 Meso-scale collaborations

Given the diminishing returns to scale for centralized organizations, many have called
for smaller, “meso-scale” collaborations and consortia that combine the efforts of
multiple labs [266] . The most successful consortium of this kind has been the In-
ternational Brain Laboratory [267, 236] , a group of 22 labs spread across six coun-
tries. They have been able to realize the promise of big team neuroscience, setting a
new standard for performing reproducible experiments across many labs [268] and
developing data management infrastructure to match [269] 15. Their project thus 15 Seriously, don’t miss their extremely impressive

data portal.serves as the benchmark for large-scale collaboration and a model from which all
similar efforts should learn from.

Critical to the IBL’s success was its adoption of a flat, non-hierarchical organiza-
tional structure, as described by Lauren E. Wool:

IBL’s virtual environment has grown to accommodate a diversity of scientific ac-
tivity, and is supported by a flexible, ‘flattened’ hierarchy that emphasizes hori-
zontal relationships over vertical management. […] Small teams of IBL members
collaborate on projects in Working Groups (WGs), which are defined around par-
ticular specializations and milestones and coordinated jointly by a chair and as-
sociate chair (typically a PI and researcher, respectively). All WG chairs sit on
the Executive Board to propagate decisions across WGs, facilitate operational
and financial support, and prepare proposals for voting by the General Assem-
bly, which represents all PIs. [236]

They should also be credited with their adoption of a form of consensus decision-
making, sociocracy, rather than a majority-vote or top-down decisionmaking struc-
ture. Consensus decision-making systems are derived from those developed by Quak-
ers and some Native American nations, and emphasize collective consent rather than
the will of the majority.

The infrastructure developed by the IBL is impressive, but its focus on a single ex-
periment makes it difficult to expand and translate to widescale use. The hardware
for the IBL experimental apparatus is exceptionally well-documented, with a com-
plete and detailed build guide and library of CAD parts, but the documentation
is not modularized such that it might facilitate use in other projects, remixed, or
repurposed. The experimental software is similarly single-purpose, a chimeric com-
bination of Bonsai [270] and PyBpod scripts. It unfortunately lacks the API-level
documentation that would facilitate use and modification by other developers, so it
is unclear to me, for example, how I would use the experimental apparatus in a differ-
ent task with perhaps slightly different hardware, or how I would then contribute
that back to the library. The experimental software, according to the PDF docu-
mentation, will also not work without a connection to an alyx database. While alyx
was intended for use outside the IBL, it still has IBL-specific and task-specific values
in its source-code, and makes community development difficult with a similar lack
of API-level documentation and requirement that users edit the library itself, rather
than temporary user files, in order to use it outside the IBL.

My intention is not to denigrate the excellent tools built by the IBL, nor their in-

https://data.internationalbrainlab.org/
https://sociocracy.info
https://rhizomenetwork.wordpress.com/2011/06/18/a-brief-history-of-consenus-decision-making/
https://rhizomenetwork.wordpress.com/2011/06/18/a-brief-history-of-consenus-decision-making/
https://figshare.com/articles/preprint/A_standardized_and_reproducible_method_to_measure_decision-making_in_mice_Appendix_3_IBL_protocol_for_setting_up_the_behavioral_training_rig/11634732
https://figshare.com/articles/preprint/A_standardized_and_reproducible_method_to_measure_decision-making_in_mice_Appendix_3_IBL_protocol_for_setting_up_the_behavioral_training_rig/11634732
https://figshare.com/articles/online_resource/A_standardized_and_reproducible_method_to_measure_decision-making_in_mice_CAD_files_for_behavior_rig/11639973
https://github.com/int-brain-lab/iblrig
https://github.com/pybpod/pybpod
https://github.com/int-brain-lab/iblrig/tree/master/tasks/_iblrig_tasks_ephysChoiceWorld
https://iblrig.readthedocs.io/en/latest/index.html
https://figshare.com/articles/preprint/A_standardized_and_reproducible_method_to_measure_decision-making_in_mice_Appendix_3_IBL_protocol_for_setting_up_the_behavioral_training_rig/11634732
https://figshare.com/articles/preprint/A_standardized_and_reproducible_method_to_measure_decision-making_in_mice_Appendix_3_IBL_protocol_for_setting_up_the_behavioral_training_rig/11634732
https://github.com/cortex-lab/alyx
https://github.com/cortex-lab/alyx/blob/07f481f6bbde668b81ad2634f4c42df4d6a74e44/alyx/data/management/commands/files.py#L188
https://github.com/cortex-lab/alyx/blob/07f481f6bbde668b81ad2634f4c42df4d6a74e44/alyx/data/fixtures/data.datasettype.json#L29
https://alyx.readthedocs.io/en/latest/
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spiring realization of meso-scale collaboration, but to illustrate a problem that I see
as an extension of that discussed in the context of core facilities — designing in-
frastructure for one task, or one group in particular makes it much less likely to be
portable to other tasks and groups. This argument is much more contingent on
the specific circumstances of the consortium than the prior arguments about core
facilities and institutes: when organized with mass-infrastructure in mind, collabo-
rations between semi-autonomous groups across institutions could be a powerful
mode of tool development.

It is also unclear how replicable these consortia are, and whether they challenge,
rather than reinforce technical inequity in science. Participating in consortia sys-
tems like the IBL requires that labs have additional funding for labor hours spent
on work for the consortium, and in the case of graduate students and postdocs, that
time can conflict with work on their degrees or personal research which are still far
more potent instruments of “remaining employed in science” than collaboration. In
the case that only the most well-funded labs and institutions realize the benefits of
big team science without explicit consideration given to scientific equity, mesoscale
collaborations could have the unintended consequence of magnifying the skewed
distribution of access to technical expertise and instrumentation.

The central lesson of the IBL, in my opinion, is that governance matters. Even if a
consortium of labs were to form explicitly to build mass-scale digital infrastructure,
without a formal system to ensure contributors felt heard and empowered to shape
the project it would soon become unfocused or unsustainable. Even if this system
is not perfect, with some labor still falling unequally on some researchers, it is a
promising model for future collaborative consortia.

9.3.4 The rest of us…

Outside of ivies with rich core facilities, institutes like the Allen, or nascent multi-
lab consortia, the rest of us are largely on our own, piecing together what we can
from proprietary and open source technology. The world of open source scien-
tific software has plenty of energy and lots of excellent work is always being done,
though constrained by the circumstances of its development described briefly above.
Anything else comes down to whatever we can afford with remaining grant money,
scrape together from local knowledge, methods sections, begging, borrowing, and
(hopefully not too much) stealing from neighboring labs.

The state of broader scientific deinfrastructuring is perhaps to be expected given our
relationship to informational monopolies that in some part depend on it, but unlike
many other industries or professions there is reason for hope in science. Science is
packed with people with an enormous diversity of skills, resources, and perspectives.
Publicly funded science is relatively unique as a labor system that does not strictly
depend on profit. There is widespread discontent with the systems of scientific prac-
tice, and so the question becomes how we can organize our skill, labor, and energy
to rebuild the systems that constrain us.

A third option from the standardization offered by centralization and the bloom-
ing, buzzing, beautiful chaos of disconnected open-source development is that of
decentralized systems, and with them we might build the means by which the “rest
of us” can mutually benefit by organizing our knowledge and labor.

We don’t need to wait for permission from a memo from a funding body or the
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founding of some new organization. We do have to recognize that while we might
have very different roles to play, we are all responsible for the state of digital scien-
tific infrastructure. We should take courage and purpose in knowing that we are
not alone, and that our problems are just one reflection of the model of digital en-
closure and surveillance that defines the information economy. There is no need
for distance or animosity with the other modes of organization described above, as
if what we intend to build is truly useful to everyone except those that profit from
its absence, then that certainly includes them. Shunting the vision of a better future
onto some as-yet formed effort is precisely the trap we should avoid: our existing
organizations should be a part of the work of rebuilding our infrastructure precisely
because we should be reconsidering the ways that we, ourselves work. Seeing a sub-
scription to this platform monopolist’s cloud, or that knowledge baron’s prestige
hierarchy as not being a value-neutral decision begs an alternative from people, labs,
and institutions alike. The diversity in what that means for different groups is a
strength, not a weakness, but it does require some shared vision and notion of how
to get there. The rest of the paper is an attempt to draft one.



10
A Draft of Decentralized Scientific Infrastructure
What should we build?

The infrastructural systems I will describe here are similar to previous notions of
“grass-roots” science articulated within systems neuroscience [266] , “small tech”
[271] or the anti software software club’s manifesto [272] in the web development
world , and shares some of the motivations of the Solid project [273] , but ultimately
draws from a set of ideas with broad and deep history in many domains of comput-
ing. My intention is to provide a more prescriptive scaffolding for their design and
implementation as a way of painting a picture of what science could be like. This
sketch is not intended to be final, but a starting point for further negotiation and
refinement.

Throughout this section, when I am referring to any particular piece of software
I want to be clear that I don’t intend to be dogmatically advocating that software
in particular, but software like it that shares its qualities — no snake oil is sold in
this document. Similarly, when I describe limitations of existing tools, without ex-
ception I am describing a tool or platform I love, have learned from, and think is
valuable — learning from something can mean drawing respectful contrast! Many
of these technologies have long and torrid social histories, and so when invoked as
examples I don’t necessarily mean to import along with them all the unmentioned
baggage that might accompany them1. 1 As one example, while I will write about linked

data, I don’t necessarily mean it in precisely
the original instantiation as an irrevocable
URI/RDF/SPARQL-only web, but do draw
on its triplet link structure.

10.1 Design Principles

I won’t attempt to derive a definition of decentralized systems from first principles
here, but from the constraints described above, some design principles that illustrate
the idea emerge naturally. For the sake of concreteness, in some of these I will draw
from the architectural principles of the internet protocols (specifically TCP/IP): the
most successful decentralized digital technology project to date.

10.1.1 Protocols, not Platforms

Much of the basic technology of the internet was developed as protocols that de-
scribe the basic attributes and operations of a process. A simple and common exam-
ple is email over SMTP (Simple Mail Transfer Protocol) [274] . SMTP describes a
series of steps that email servers must follow to send a message: the sender initiates a
connection to the recipient server, the recipient server acknowledges the connection,
a few more handshake steps ensue to describe the senders and receivers of the mes-
sage, and then the data of the message is transferred. Any software that implements
the protocol can send emails to and from any other. The protocol basis of email is
the reason why it is possible to send an email from a gmail account to a hotmail ac-
count (or any other hacky homebrew SMTP client) despite being wholly different
pieces of software.

In contrast, platformsprovide some service with a specific body of code usually with-

https://solidproject.org/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
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out any pretense of generality. In contrast to email over SMTP, we have grown
accustomed to not being able to send a message to someone using Telegram from
WhatsApp, switching between multiple mutually incompatible apps that serve nearly
identical purposes. Platforms, despite being theoretically more limited than associ-
ated protocols, are attractive for many reasons: they provide funding and adminis-
trative agencies a single point of contracting and liability, they typically provide a
much more polished user interface, and so on. These benefits are short-lived, how-
ever, as the inevitable toll of lock-in and shadowy business models is realized.

By virtue of being intended for use by many independent organizations rather than
under the sole control of a platform-holder, protocols are a complicated political
effort that embed and facilitate systems of belief and power (see re: TCP/IP [249]
, ActivityPub [275] ). For example, in order to arrive at a version of TCP/IP that
kept the intermediate relays relatively simple at the expense of reliability, the manu-
facturer of the “smart” relays had to be excluded from the group. TCP/IP’s success
was not inevitable: it was one of several protocols, becoming the default over pro-
prietary competitors from telecommunication and network hardware companies
because of some combination of timing, its relative absence of bureaucracy, and in-
stitutional adoption (depending on who does the accounting)[249] .

Seemingly prosocial protocols can be used by industries to preempt an alternative
that would undermine their profit model — a notable example for academics be-
ing the DOI system, created in order for publishers to preserve control over their
intellectual property [276] . The STM association2 hastily3 threw its weight be-

2 The global trade association of publishers that
serves as its lobbying and propaganda arm.

3 The description provided by the “official”
CrossRef 10 year retrospective paints a picture of
panicked executives making an announcement for
something they weren’t quite sure what it would
be, but it would be something to compete with
pubmed:

We decided to issue an announcement of a broad
STM reference linking initiative. It was, of course,
a strategic move only, since we had neither plan nor
prototype.”

A small group led by Arnoud de Kemp of
Springer-Verlag met in an adjacent room imme-
diately following the Board meeting to draft the
announcement, which was distributed to all
attendees of the STM annual meeting the follow-
ing day and published in an STM membership
publication.

Campbell recalled running into Bolman and
Swanson (neither of whom was then on the
STM Board) in the hotel lobby immediately
after the drafting of the announcement. Their
astonishment at hearing what had just transpired
was matched by Campbell’s own on learning what
they had been working on. […]

Bolman and Swanson chose to seize the moment,
and called an ad hoc meeting the following evening,
Tuesday, October 12, to announce their venture
and assemble a coalition of publishers to launch it.
[…]

The potential benefit of the service that would
become CrossRef was immediately apparent.
Organizations such as AIP and IOP (Institute
of Physics) had begun to link to each other’s
publications, and the impossibility of replicating
such one-off arrangements across the industry was
obvious. As Tim Ingoldsby later put it, “All those
linking agreements were going to kill us.” [277]

hind the DOI-X initiative at its 1999 meeting. The impending creation of PubMed
Central by the National Library of Medicine (and see then-NIH Director Harold
Varmus’ and others self-described “radical” departure from publishers with what
became PLoS [218, 217] ) posed an existential threat to for-profit publishing. At
the time there was no unified means of linking to scholarly work4, and bilateral

4 It is hard to appreciate in retrospect how radical
URLs/URIs were at the time — it might seem
trivial to us now to be able to arbitrarily link to
different locations on the internet, but before the
internet linking was a carefully controlled process
within publishing, looking more like ISBN and
ISSNs than hyperlinks.

publisher-publisher linking deals threatened the smooth operation of business, so
an NIH-owned platform might have made journals might lose their status as the ob-
ligate dissemination platform. According to Bob Campbell, STM chair at the time:
“our consensus was that publishers should be the ones doing the linking.” Unlike
the anarchic URI/URL, The DOI system requires a registrar (denoted by the prefix
before the slash, doi:10.xxxx/yyyyy) to create DOI names [278] . In the US, that
means being an institution with an approved CrossRef membership, which requires
members not to link to intellectual property infringing content, and to use DOIs
as their default reference links to other works. Effectively, though it is an “open5”

5 Reading the standard costs 88 Swiss Francs.

standard, the DOI system ensures that publishers remain in control of what counts
as scholarly work [277] .

When approaching protocols, we should do so with humility and caution: work
in smaller teams with shared visions with the intention of rough consensus around
multiple instances of working code. We should refuse participation by the wide
range of industries and interest groups circling each domain of infrastructure, their
protocols and standards are siren songs.

10.1.2 Integration, not Invention

At the advent of the internet protocols, several different institutions and universi-
ties had already developed existing network infrastructures, and so the “top level
goal” of IP was to “develop an effective technique for multiplex utilization of exist-

https://www.crossref.org/services/content-registration/
https://www.crossref.org/membership/terms/
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ing interconnected networks,” and “come to grips with the problem of integrating
a number of separately administered entities into a common utility” [279] . As a
result, IP was developed as a ‘common language’ that could be implemented on any
hardware, and upon which other, more complex tools could be built. This is also
a cultural practice: when the system doesn’t meet some need, one should try to ex-
tend it rather than building a new, separate system — and if a new system is needed,
it should be interoperable with those that exist.

This point is practical as well as tactical: to compete, an emerging protocol should
integrate or be capable of bridging with the technologies that currently fill its role. A
new database protocol should be capable of reading and writing existing databases,
a new format should be able to ingest and export to existing formats, and so on. The
degree to which switching is seamless is the degree to which people will be willing
to switch.

This principle runs directly contrary to the current incentives for novelty and frag-
mentation and the dominant economic model of software platforms, which must
be counterbalanced by design choices elsewhere.

10.1.3 Embrace Heterogeneity, Be Uncoercive

In addition to integrating with existing systems, it must be straightforward for unan-
ticipated future development to be integrated to accommodate unanticipated needs
and practices. This idea is related to “the test of independent invention”, summa-
rized with the question “if someone else had already invented your system, would
theirs work with yours?” [280] . Rather than attempting to a priori divine a sin-
gle perfect universal protocol, we should design multiple with extensibility in mind
(see this discussion of the extensibility models of ActivityPub to XMPP [281] and
Christopher Yoo’s description of the tradeoffs of the internet’s layered protocols
[282] ) to leave open the opportunity for porting functionality between them.

This principle also has tactical elements. An uncoercive system allows users to grad-
ually adopt it rather than needing to adopt all of its components in order for any one
of them to be useful. We shouldn’t rely on potential users making dramatic changes
to their existing practices. For example, an experimental framework should not in-
sist on a prescribed set of supported hardware and rigid formulation for describing
experiments. Instead it should provide affordances that give a clear way for users
to extend the system to fit their needs [283] .There always needs to be a benefit to
adopting further components of the system to encourage voluntary adoption, but
it should never be compulsory. For example, again from experimental frameworks,
it should be possible to use it to control experimental hardware without needing
to use the rest of the experimental design, data storage, and interface system. To
some degree this is accomplished with a modular system design where designers are
mindful of keeping the individual modules independently useful.

A noncoercive architecture also prioritizes the ease of leaving. Though this is some-
what tautological to protocol-driven design, specific care must be taken to enable
export and migration to new systems. Multiplicity of design and making leaving
easy help ensure that early missteps in development of the system are not fatal, pre-
venting lock-in to a component that becomes fixed and stagnant.
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10.1.4 Empower People, not Systems

Because IP was initially developed as a military technology by DARPA, a primary
design constraint was survivability in the face of failure. The model adopted by in-
ternet architects was to move as much functionality as possible from the network
itself to the end-users of the network — rather than the network itself guarantee-
ing a packet is transmitted, the sending computer will do so by requiring a response
from the recipient [279] .

For infrastructure, we should make tools that don’t require a central team of devel-
opers to maintain, a central server-farm to host data, or a small group of people to
govern. Whenever possible, data, software, and hardware should be self-describing6, 6 AKA you shouldn’t need to resort to some

external source to understand it. Data should come
packaged with clear metadata, software should have
its own docs, etc.

so one needs minimal additional tools or resources to understand and use it. It
should never be the case that funding drying up for one node in the system causes
the entire system to fail.

Practically, this means that the tools of digital infrastructure should be deployable by
individual people and be capable of recapitulating the function of the system with-
out reference to any central authority. Researchers need to be given control over the
function of infrastructure: from controlling sharing permissions for eg. clinically
sensitive data to assurance that their tools aren’t spying on them. Formats and stan-
dards must be negotiable by the users of a system rather than regulated by a central
governance body.

10.1.5 Infrastructure is Social

The alternative to centralized governing and development bodies is to build the tools
for community control over infrastructural components. This is perhaps the largest
missing piece in current scientific tooling. On one side, decentralized governance is
the means by which an infrastructure can be maintained to serve the ever-evolving
needs of its users. On the other, a sense of community ownership is what drives peo-
ple to not only adopt but contribute to the development of an infrastructure. In
addition to being a source of all the warm fuzzies of socially affiliative “community-
ness,” any collaborative system needs a way of ensuring that the practice of maintain-
ing, building, and using it is designed to visibly and tangibly benefit those that do,
rather than be relegated to a cabal of invisible developers and maintainers [284, 285]
.

Governance and communication tools also make it possible to realize the infinite
variation in application that infrastructures need while keeping them coherent: tools
must be built with means of bringing the endless local conversations and modifica-
tions of use into a common space where they can become a cumulative sense of
shared memory.

I will return to this idea in Archives Need Communities in the context of social dy-
namics of private bittorrent trackers, as well as propose a set of basic communication
and governance tools in Rebuilding Scientific Communication.

10.1.6 UsabilityMatters

It is not enough to build a technically correct technology and assume it will be
adopted or even useful, it must be developed embedded within communities of
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practice and be useful for solving problems that people actually have. We should learn
from the struggles of the semantic web project. Rather than building a fully pre-
scriptive and complete system first and deploying it later, we should develop tools
whose usability is continuously improved en route to a (flexible) completed vision.

The adage from RFC 19587 “nothing gets standardized until there are multiple 7 A “request for comment” from the Network
Working Group of the Internet Engineering Task
Force on the architecture of the internet. The
IETF designs many of the protocols that serve as
the backbone of the internet.

instances of running code” [283] captures the dual nature of the constraint well.
Workable standards don’t emerge until they have been extensively tested in the field,
but development without an eye to an eventual protocol won’t make one.

We should read the gobbling up of open protocols into proprietary platforms that
defined “Web 2.0” as instructive8[286] . Why did Slack outcompete IRC?9 The 8 (in addition to a demonstration of the raw power

of concentrated capital, of course)
9 IRC, internet relay chat, was a messaging system
that served many of the same functions as the
group messaging program Slack serves now. Also
see its more active cousin XMPP

answer is relatively simple: it was relatively simple to use. Using a contemporary
example, to set up a Synapse server to communicate over Matrix one has to wade
through dozens of shell commands, system-specific instructions, potential conflicts
between dependent packages, set up an SQL server… and that’s just the backend,
we don’t even have a frontend client yet! In contrast, to use Slack you download the
app, give it your email, and you’re off and running.

The control exerted by centralized systems over their system design does give cer-
tain structural advantages to their usability, and their for-profit model gives certain
advantages to their development process. There is no reason, however, that decen-
tralized systems must be intrinsically harder to use, we just need to focus on user
experience to a degree comparable to centralized platforms: if it takes a college de-
gree to turn the water on, that ain’t infrastructure.

People are smart, they just get frustrated easily and have other things to do on a
deadline. We have to raise our standards of design such that we don’t expect users
to have even a passing familiarity with programming, attempting to build tools that
are truly general use. We can’t just design a peer-to-peer system, we need to make
the data ingestion and annotation process automatic, effortless, and expressive. We
can’t just build a system for credit assignment, it needs to happen as an automatic
byproduct of using the system. We can’t just make tools that work, they need to feel
good to use.

Centralized systems also have intrinsic limitations that provide openings for decen-
tralized systems, like cost, incompatibility with other systems, restrictions on inde-
pendent extension, and opacity of function. The potential for decentralized sys-
tems to capture the independent development labor of all of its users, rather than
just that of a core development team, is one means of competition. If a system is
sufficiently easy to adopt, at least comparable to prior tooling, and gives people a
satisfying means of having their work accepted and valued, the social and techni-
cal joy might be enough to outweigh the inertia of change and the convenience of
centralized systems.

With these principles in mind, and drawing from other knowledge communities
solving similar problems: internet infrastructure, library/information science, peer-
to-peer networks, and radical organizing, I conceptualize a system of distributed
infrastructure for (neuro)science as three objectives: shared data, shared tools,
and shared knowledge.

10.2 Shared Data

https://en.wikipedia.org/wiki/Embrace,_extend,_and_extinguish
https://en.wikipedia.org/wiki/Internet_Relay_Chat
https://slack.com/
https://en.wikipedia.org/wiki/XMPP
https://matrix-org.github.io/synapse/latest/setup/installation.html
https://matrix.org/docs/spec/


118 swarmpunk: rough consensus and running code in brains, machines, and society

10.2.1 Formats as Onramps

The shallowest onramp towards a generalized data infrastructure is to make use of
existing discipline-specific standardized data formats. As will be discussed later, a
truly universal pandisciplinary format is impossible and undesirable, but to arrive
at the alternative we should first congeal the wild west of unstandardized data into
a smaller number of established formats.

Data formats consist of some combination of an abstract specification, an imple-
mentation in a particular storage medium, and an API for interacting with the for-
mat. I won’t dwell on the particular qualities that a particular format needs, assum-
ing that most that would be adopted would abide by FAIR principles.

There are a dizzying number of scientific data formats [287] , so a comprehensive
treatment is impractical here and I will use Neurodata Without Borders:N (NWB)[288]
as an example. NWB is the de facto standard for systems neuroscience, adopted by
many institutes and labs, though far from universally. NWB consists of a specifi-
cation language, a schema written in that language, a storage implementation in
hdf5, and an API for interacting with the data. They have done an admirable job
of engaging with community needs [289] and making a modular, extensible format
ecosystem.

The major point of improvement for NWB, and I imagine many data standards,
is the ease of conversion and use. The conversion API requires extensive program-
ming, knowledge of the format, and navigation of several separate tutorial docu-
ments. This means that individual labs, if they are lucky enough to have some par-
tially standardized format for the lab, typically need to write (or hire someone to
write) their own software library for conversion.

Without being prescriptive about its form, substantial interface development is needed
to make mass conversion possible. It’s usually untrue that unstandardized data had
no structure, and researchers are typically able to articulate it – “the filenames have
the collection date followed by the subject id,” and so on. Lowering the barriers
to conversion mean designing tools that match the descriptive style of folk formats,
for example by prompting them to describe where each of an available set of meta-
data fields are located in their data. It is not an impossible goal to imagine a piece of
software that can be downloaded and with minimal recourse to reference documen-
tation allow someone to convert their lab’s data within an afternoon.

NWB also has an extension interface, which allows, for example, data from common
hardware and software tools to be more easily described in the format. These are
registered in an extensions catalogue, but at the time of writing it is relatively sparse.
The preponderance of lab-specific conversion packages relative to extensions is in-
dicative of an interface and community tools problem: presumably many people are
facing similar conversion problems, but because there is not a place to share these
techniques in a human-readable way, the effort is duplicated in dispersed codebases.
We will return to some possible solutions for knowledge preservation and format
extension when we discuss tools for shared knowledge.

For the sake of the rest of the argument, let us assume that some relatively trivial
conversion process exists to subdomain-specific data formats and we reach some
reasonable penetrance of standardization. The interactions with the other pieces
of infrastructure that may induce and incentivize conversion will come later.

https://www.nwb.org/nwb-software/
https://schema-language.readthedocs.io/en/stable/
https://schema-language.readthedocs.io/en/stable/
https://nwb-schema.readthedocs.io/en/stable/
https://nwb-storage.readthedocs.io/en/stable/
https://nwb-storage.readthedocs.io/en/stable/
https://pynwb.readthedocs.io/en/stable/
https://github.com/catalystneuro/tank-lab-to-nwb
https://github.com/catalystneuro/mease-lab-to-nwb
https://nwb-extensions.github.io/
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10.2.2 Peer-to-peer as a Backbone

We should adopt a peer-to-peer system for storing and sharing scientific data. There
are, of course many existing databases for scientific data, ranging from domain-general
like figshare and zenodo to the most laser-focused subdiscipline-specific. The no-
tion of a database, like a data standard, is not monolithic. As a simplification, they
consist of at least the hardware used for storage, the software implementation of
read, write, and query operations, a formatting schema, some API for interacting
with it, the rules and regulations that govern its use, and especially in scientific databases
some frontend for visual interaction. For now we will focus on the storage software
and read-write system, returning to the format, regulations, and interface later.

Centralized servers10 are fundamentally constrained by their storage capacity and 10 This applies to centrally managed traditional
servers as well as rented space on larger CDNs like
AWS, but in the case of the CDN the constraint is
from their pricing model.

bandwidth, both of which cost money. In order to be free, database maintainers
need to constantly raise money from donations or grants in order to pay for both.
Funding can never be infinite, and so inevitably there must be some limit on the
amount of data that someone can upload and the speed at which it can serve files11. 11 As I am writing this, I am getting a (very unscien-

tific sample of n=1) maximum speed of 5MB/s on
the Open Science Framework

Centralized servers are also intrinsically out of the control of their users, requir-
ing them to abide whatever terms of use the server administrators set. Even if the
database is carefully backed up, it serves as a single point of infrastructural failure,
where if the project lapses then at worst data will be irreversibly lost, and at best a lot
of labor needs to be expended to exfiltrate, reformat, and rehost the data. The same
is true of isolated, local, institutional-level servers and related database platforms,
with the additional problem of skewed funding allocations making them unafford-
able for many researchers.

Peer-to-peer (p2p) systems solve many of these problems, and I argue are the only
type of technology capable of making a database system that can handle the scale
of all scientific data. They are also not new for science, used in projects like Aca-
demicTorrents.com [290, 291] or the now defunct BioTorrents [292] . Whether
we acknowledge it or not, most scientific work is already available on p2p networks
via sci-hub and library genesis [293, 294, 295] .

There is an enormous degree of variation between p2p systems12, but they share a 12 Peer to peer systems are, maybe predictably,
a whole academic subdiscipline. See [296] for
reference.

set of architectural advantages. The essential quality of any p2p system is that rather
than each participant in a network interacting only with a single server that hosts all
the data, everyone hosts data and interacts directly with each other.

For the sake of concreteness, we can consider a (simplified) description of Bittorrent
[297] , arguably the most successful p2p protocol. To share a collection of files, a
user creates a .torrent file with their Bittorrent client which consists of a crypto-
graphic hash, or a string that is unique to the collection of files being shared; and a list
of “trackers.” A tracker, appropriately, keeps track of the .torrent files that have
been uploaded to it, and connects users that have or want the content referred to by
the .torrent file. The uploader (or seeder) then leaves a torrent client open waiting
for incoming connections. Someone who wants to download the files (a leecher)
will then open the .torrent file in their client, which will then ask the tracker for
the IP addresses of the other peers who are seeding the file, directly connect to them,
and begin downloading. So far so similar to standard client-server systems, but say
another person wants to download the same files before the first person has finished
downloading it: rather than only downloading from the original seeder, the new
leecher downloads from both the original seeder and the first leecher by requesting
pieces of the file from each until they have the whole thing. Leechers are incentivized

https://www.dandiarchive.org/
https://openneuro.org/
https://www.brainminds.riken.jp/
https://biccn.org/
https://figshare.com/
https://zenodo.org/
https://osf.io
https://academictorrents.com/
https://academictorrents.com/
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Glossary_of_BitTorrent_terms#Client


120 swarmpunk: rough consensus and running code in brains, machines, and society

to share among each other to prevent the seeders from spending time reuploading
the pieces that they already have, and once they have finished downloading they be-
come seeders themselves.

From this very simple example, we can articulate a number of attractive qualities of
p2p systems:

• First, p2p systems are extremely inexpensive to maintain since they take advan-
tage of the existing bandwidth and storage space of the computers in the swarm.
Near the height of its popularity in 2009, The Pirate Bay, a notorious bittorrent
tracker [298] , was estimated to cost $3,000 per month to maintain while serving
approximately 20 million peers [299] . According to a database dump from 2013
[300] , multiplying the size of each torrent by the number of seeders (ignoring
any partial downloads from leechers), the approximate instantaneous amount of
data stored by The Pirate Bay was ~26 Petabytes. The comparison to centralized
services is not straightforward, since it is hard to evaluate the distributed costs of
additional storage media (as well as the costs avoided by being able to take advan-
tage of existing storage infrastructure within labs and institutes), but for the sake
of illustration: hosting 26PB would cost $546,000/month with standard AWS
S3 hosting ($0.021/GB/month). On AWS, downloads cost extra ($0.05/GB), so
the much smaller academictorrents.com which has served nearly 18PB in 1.3m
downloads since 2016 would have cost $900,000 in bandwidth costs alone — as
opposed to the literally zero dollars it costs to operate.

• The speedof a bittorrent swarm increases, rather than decreases, the more people
are using it since it is capable of using all of the available bandwidth in the system.

• The network is extremely resilient since the data is shared across many indepen-
dent peers in the system. If our goal is to make a resilient and robust data archi-
tecture, we would benefit by paying attention to the tools used in the broader
archival community, especially the archival communities that are frequent tar-
gets of governments and intellectual property holders[301] . Despite more than
15 years of concerted effort by governments and intellectual property holders,
The Pirate Bay is still alive and kicking13 [302] . This is because even if the en- 13 knock on wood
tire infrastructure of the tracker is destroyed, as it was in 2006, the files are dis-
tributed across all of its users, the actual database of .torrent metadata is quite
small, and the tracker software is extraordinarily simple to rehost [303] – The
Pirate Bay was back online in 2 days. When another tracker, what.cd (which we
will return to soon) was shut down, a series of successors popped up using the
open source tools Gazelle and Ocelot that what.cd developers built. Within two
weeks, one successor site had recovered and reindexed 200,000 of its torrents re-
submitted by former users [304] . Bittorrent is also used by archival groups with
little funding like Archive Team, who struggled – but eventually succeeded – to
disseminate their geocities archive over a single “crappy cable modem” [305] .

• The network is extremely scalable since there is no cost to connecting new peers
and the users of a system expand the storage capacity of the system depending
on their needs. Rather than having one extremely fast data center, the model of
p2p systems is to leverage many approachable peer/servers.

Peer-to-peer systems are not mutually exclusive with centralized servers: servers are
peers too, after all. A properly implemented p2p system will always be at least

https://aws.amazon.com/s3/pricing/?nc=sn&loc=4
https://aws.amazon.com/s3/pricing/?nc=sn&loc=4
https://academictorrents.com
https://github.com/academictorrents/academictorrents-docs/issues/31#issuecomment-1155917166
https://github.com/academictorrents/academictorrents-docs/issues/31#issuecomment-1152851111
https://github.com/WhatCD/Gazelle
https://github.com/WhatCD/Ocelot
https://wiki.archiveteam.org/index.php/Main_Page
https://wiki.archiveteam.org/index.php/GeoCities_Project
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as fast and have at least as much storage as any alternative centralized server be-
cause peers can use both the bandwidth of the server and that of any peers that
have the file. In the bittorrent ecosystem large-bandwidth/storage peers are known
as “seedboxes”[306] when they use the bittorrent protocol, and “web seeds”[307]
when they use a protocol built on top of traditional HTTP. Archive.org has been
distributing all of its materials with bittorrent by using its servers as web seeds since
2012 and makes this point explicitly: “BitTorrent is now the fastest way to down-
load items from the Archive, because the Bittorrent client downloads simultane-
ously from two different Archive servers located in two different datacenters, and
from other Archive users who have downloaded these Torrents already.” [308]

p2p systems complement centralized servers in a number of ways beyond raw down-
load speed, increasing the efficiency and performance of the network as a whole.
Spotify began as a joint client/server and p2p system [309] , where when a listener
presses play the central server provides the data until the p2p system locates peers
with a cached copy to download from. The central server is able to respond quickly
and reliably, and is the server of last resort in the case of rare files that aren’t being
shared by anyone else in the network. The p2p system alleviates pressure on the
central server, improving the performance of the network and reducing server costs.

A peer to peer system is a particularly natural fit for many of the common circum-
stances and practices in science, where centralized server architectures seem (and
prove) awkward and inefficient. Most labs, institutes, or other organized bodies of
science have some form of local or institutional storage systems. In the most fre-
quent cases of sharing data within a lab or institute, sending it back and forth to
some nationally-centralized server is like walking across the lab by going the long
way around the Earth. That’s the method invoked by a Dropbox or AWS link, which
keeps a time-tested p2p system relevant: walking a flash drive across the lab. The sys-
tem makes less sense when several people in the same place need to access the same
data at the same time, as is frequently the case with multi-lab collaborations, or scien-
tific conferences and workshops. Instead of needing to wait on the 300kb/s confer-
ence wifi bandwidth as it’s cheese-gratered across every machine, we instead could
directly beam it between all computers in range simultaneously, full blast through
the decrepit network switch that won’t have seen that much excitement in years.

If we take the suggestion of Andrey Andreev et al. and invest in server clusters within
institutes [310, 311] , their impact could be multiplied manyfold by fluidly combin-
ing them in a p2p swarm. While the NIH might be shy to start up another server
farm for all scientific data and prefer to contract with AWS, the rest of us don’t have
to be. Nervous university administrators concerned about bandwidth costs should
also favor p2p systems: instead of needing to serve entire datasets to each person
who wants them, the load can be spread out across many institutes naturally based
on the use of the file, and sharing the dataset internally would cost nothing at all.

So far I have relied on the Extraordinarily Simplified Bittorrent14 depiction of a peer 14 ™ 
to peer system, but there are many improvements and variants that can address dif-
ferent needs for scientific data infrastructure.

One obvious need that bittorrent can’t currently support is version control15, but 15 Though the Bittorrent V2 protocol specification
[312] adopts a Merkle tree data structure which
could theoretically support versioned torrents, v2
torrents are still not widely supported.

more recent p2p systems do. IPFS functions like “a single BitTorrent swarm, ex-
changing objects within one Git repository.” [313] 16 Dat [314] , specifically de-

16 Git, briefly, is a version control system that keeps
a history of changes of files (blobs) as a Merkle
DAG: files can be updated, and different versions
can be branched and reconciled.

signed for data synchronization and versioning, handles versioning and more. A
full description of IPFS is out of scope, and it has plenty of problems [315] , but for

https://archive.org
https://archive.org/details/bittorrent
https://ipfs.io/
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now it suffices to say p2p systems can handle version control.

Bittorrent swarms are vulnerable to data loss if all the peers seeding a file disconnect
(though the tail is longer than typically assumed, see [316] ), but this too can be
addressed with updated p2p system design. A first-order solution to this problem
is a variant of IPFS’ notion of ‘pinning.’ Since backup to lab-level or institutional
servers is already commonplace, one peer could be able to ‘pin’ another and auto-
matically download all the data that they share. This concept could scale to insti-
tutes and national infrastructure as scientists can request the datasets they’d like to
be saved permanently be pinned.

Another could be something akin to Freenet [317] . Peers could allocate a certain
amount of their unused storage space to be used to automatically download, cache,
and rehost shards of other datasets. Distributing chunks and encrypting them at
rest so the rehoster can’t inspect their contents would make it possible to maintain
privacy and network availability for sensitive data (see, for example, ERIS). IPFS has
an analogous concept – BitSwap – that is makes it into a barter system. Peers who
seek to download will have to ‘earn’ it by finding some chunk of data that the other
peers want, download, and share them, though it seems like an empirical question
whether or not a barter system works or is necessary.

Solid is a project that almost exactly meets all these needs [318, 273, 319] . Solid
allows people to share data in Pods, which let them control access and distribution
across storage system with a unified identity system. It is implementation-agnostic,
and so can support any peer-to-peer storage and transfer system that complies with
its protocol specification.

There are a number of additional requirements for a peer to peer scientific data in-
frastructure, but even these seemingly very technical problems of versioning and
distributed storage show the clear need to consider the structure of the surround-
ing social system. What control do we give to researchers over the version history of
their data? Should people that aren’t the originating researcher be able to issue new
versions? What structure of distributed/centralized storage works? How should we
incentivize sharing of excess storage and resources?

Even before considering additional social systems, a p2p structure in itself implies
a different relationship to infrastructure. Scientists always unavoidably make their
data available to at least one person: themselves; on at least one computer: theirs,
and that computer is usually connected to the internet. With a p2p system that in-
tegrates metadata from domain-specific data formats, that’s it, that’s all, the data
is already hosted by merely existing. Dust your palms off: open data achieved. A
peer-to-peer backbone for scientific infrastructure realizes the unnecessarily radical
notion that our infrastructure can be integrated into our daily practices, rather than
existing exogenously as something “out there.” It helps us internalize the slyly sub-
versive notion that we can build it ourselves instead of renting something out of our
control from someone else.

Scientists don’t need to reinvent the notion of distributed, community curated data
archives from scratch. In addition to scholarly work on the social systems of digital
infrastructure, we can learn from communities of practice, and there has been no
more important and impactful decentralized archival project than internet piracy.

https://inqlab.net/projects/eris/
https://solidproject.org/
https://solidproject.org/about
https://solidproject.org/TR/protocol
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10.2.3 Archives Need Communities

Why do hundreds of thousands of people, completely anonymously, with zero com-
pensation, spend their time to do something that is as legally risky as curating pirated
cultural archives?

Scholarly work, particularly from Economics, tends to focus on understanding piracy
in order to prevent it[320, 321] , taking the moral good of intellectual property mar-
kets as an a priori imperative and investigating why people behave badly and “rend
[the] moral fabric associated with the respect of intellectual property.” [321] . If we
put the legality of piracy aside, we may find a wealth of wisdom and insight to draw
from for building scientific infrastructure.

The world of digital piracy is massive, from entirely disorganized efforts of individ-
ual people on public sites to extraordinarily organized release groups [320] , and so
a full consideration is out of scope (see [322] ), but many of the important lessons
are taught by the structure of bittorrent trackers.

An underappreciated element of the BitTorrent protocol is the effect of the separa-
tion between the data transfer protocol and the “discovery” part of the system — or
“overlay” — on the community structure of torrent trackers (for a more complete
picture of the ecosystem, see [316] ). Many peer to peer networks like KaZaA or the
gnutella-based Limewire had searching for files integrated into the transfer interface.
The need for torrent trackers to share .torrent files spawned a massive community of
private torrent trackers that for decades have been iterating on cultures of archival,
experimenting with different community structures and incentives that encourage
people to share and annotate some of the world’s largest, most organized libraries.

One of these private trackers was the site of one of the largest informational tragedies
of the past decade: what.cd17, which I will use as an example to describe some of 17 for a detailed description of the site and commu-

nity, see Ian Dunham’s dissertation [323]these community systems.

What.cd was a bittorrent tracker that was arguably the largest collection of music
that has ever existed. At the time of its destruction in 2016, it was host to just over
one million unique releases, and approximately 3.5 million torrents18 [323] . Ev- 18 Though spotify now boasts its library having 50

million tracks, back of the envelope calculations
relating number of releases to number of tracks are
fraught, given the long tail of track numbers on
albums like classical music anthologies with several
hundred tracks on a single “release.”

ery torrent was organized in a meticulous system of metadata communally curated
by its roughly 200,000 global users. The collection was built by people who cared
deeply about music, rather than commercial collections provided by record labels
notorious for ceasing distribution of recordings that are not commercially viable —
or just losing them in a fire [324] . Users would spend large amounts of money
to find and digitize extremely rare recordings, many of which were unavailable any-
where else and are now unavailable anywhere, period. One former user describes
one example:

“I did sound design for a show about Ceaușescu’s Romania, and was able to pull
together all of this 70s dissident prog-rock and stuff that has never been released
on CD, let alone outside of Romania” [325]

What.cd was a “private” bittorrent tracker, where unlike public trackers that anyone
can access, membership was strictly limited to those who were personally invited or
to those who passed an interview (for more on public and private trackers, see [326]
). Invites were extremely rare, and the interview process was demanding to the point
where extensive guides were written to prepare for them.

The what.cd incentive system was based on a required ratio of data uploaded vs. data

https://en.wikipedia.org/wiki/Kazaa
https://en.wikipedia.org/wiki/Gnutella
https://en.wikipedia.org/wiki/LimeWire
https://opentrackers.org/whatinterviewprep.com/index.html
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Figure 10.1: The what.cd artist page for Kanye
West (taken from here in the style of pirates,
without permission). For the album “Yeezus,” there
are ten torrents, grouped by each time the album
was released on CD and Web, and in multiple
different qualities and formats (.flac, .mp3). Along
the top is a list of the macro-level groups, where
what is in view is the “albums” section, there are
also sections for bootleg recordings, remixes, live
albums, etc.

downloaded [327] . Peer to peer systems need to overcome a free-rider problem
where users might download a torrent (“leeching”) and turn their computer off,
rather than leaving their connection open to share it to others (or, “seeding”). In
order to download additional music, then, one would have to upload more. Since
downloading is highly restricted, and everyone is trying to upload as much as they
can, torrents had a large number of “seeders,” and even rare recordings would be
sustained for years, a pattern common to private trackers [328] .

The high seeder/leecher ratio made it so it was extremely difficult to acquire upload
credit, so users were additionally incentivized to find and upload new recordings
to the system. What.cd implemented a “bounty” system, where users with a large
amount of excess upload credit would be able to offer some of it to whoever was able
to upload the album they wanted. To “prime the pump” and keep the economy
moving, highlight artists in an album of the week, or direct users to preserve rare
recordings, moderators would also use a “freeleech” system, where users would be
able to download a specified set of torrents without it counting against their down-
load quantity [329, 330] .

The other half of what.cd was the more explicitly social elements: its forums, com-
ment sections, and moderation systems. The forum was home to roiling debates
that lasted years about the structure of some tagging schema, whether one genre
was just another with a different name, and so on. The structure of the community
was an object of constant, public negotiation, and over time the metadata system
evolved to be able to support a library of the entirety of human musical culture19. 19 Though music metadata might seem like a

trivial problem (just look at the fields in an MP3
header), the number of edge cases are profound.
How would you categorize an early Madlib cassette
mixtape remastered and uploaded to his website
where he is mumbling to himself while recording
some live show performed by multiple artists,
but on the b-side is one of his Beat Konducta
collections that mix together studio recordings
from a collection of other artists? Who is the artist?
How would you even identify the unnamed artists
in the live show? Is that a compilation or a bootleg?
Is it a cassette rip, a remaster, or a web release?

To support the good operation of the site, the forums were also home to a huge
amount of technical knowledge, like guides on how to make a perfect copy of a CD
or how to detect a fake upload, that eased new users into being able to use and con-
tribute to the system.

A critical problem in maintaining coherent databases is correcting metadata errors
and departures from schemas. Finding errors was rewarded. Users were able to dis-

https://qz.com/840661/what-cd-is-gone-a-eulogy-for-the-greatest-music-collection-in-the-world/
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cuss and ask questions of the uploader in a comment section below each upload,
which would allow “polite” resolution of low-level errors like typos. More serious
problems could be reported to the moderation team, which caused the upload to be
visibly marked as under review, and the report could then be discussed either in the
comment sections or the forum. The system wasn’t perfect: being an anonymous,
gray-area community, there was of course plenty of power to be abused. Rather
than being a messy hodgepodge of fake, low-quality uploads, though, what.cd was
always teetering just shy of perfection.

These structural considerations do not capture the most elusive but indisputably
important feature of what.cd’s community infrastructure: the sense of community.
The What.cd forums were the center of many user’s relationships to music. Threads
about all the finest scales of music nichery could last for years: it was a rare place peo-
ple who probably cared a little bit too much about music could talk to people with
the same condition. What made it more satisfying than other music forums was
that no matter what music you were talking about, everyone else in the conversa-
tion would always have access to it if they wanted to hear it. Beyond any structural
incentives, people spent so much time building and maintaining what.cd because it
became a source of community and a sink of personal investment.

Structural norms supported by social systems converge as a sort of reputational in-
centive. Uploading a new album to fill a bounty both makes the network more
functional and complete, but also people respect you for it because it’s prominently
displayed on your profile as well as in the bounty charts and that feels good. Becom-
ing known on the forums for answering questions, writing guides, or even just hav-
ing a good taste in music feels good and also contributes to the overall health of the
system. Though there are plenty of databases, and even plenty of different com-
munication venues for scientists, there aren’t any databases (to my knowledge) with
integrated community systems.

The tracker overlay model mirrors and extends some of the recommendations made
by Benedikt Fecher and colleagues in their work on the reputational economy sur-
rounding data sharing [331] . They give three policy recommendations: Increas-
ing reputational benefits, reducing transaction costs, and “increasing market trans-
parency by making open access to research data more visible to members of the re-
search community.” One way to accomplish implement them is to embed a data
sharing system within a social system that is designed to reward communitarian be-
havior.

Many features of what.cd’s structure are undesirable for scientific infrastructure,
but they demonstrate that a robust archive is not only a matter of building a database
with some frontend, but also building a community [332] . Of course, we need to
be careful with building the structural incentives for a data sharing system: the very
last thing we want is another coercive leaderboard that turns what should be a collab-
orative effort punitive. In contrast to what.cd, for infrastructure we want extremely
low barriers to entry, and be agnostic to resources — researchers with access to huge
server farms should not be unduly favored. We should think carefully about using
downloading as the “cost,” because downloading and analyzing huge amounts of
data can be good and exactly what we want in some circumstances, but a threat to
privacy and data governance in others.

This model has its own problems, including the lack of interoperability between
different trackers, the need to recreate a new set of accounts and database for each

https://etiennelebel.com/cs/t-leaderboard/t-leaderboard.html
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new tracker, among others. It’s also been tried before: sharing data in specific for-
mats (as our running example, Neurodata Without Borders) on indexing systems
like bittorrent trackers amounts to something like BioTorrents [292] or Academic-
Torrents [290] . Even with our extensions of version control and some model of
automatic mirroring of data across the network, we still have some work to do. To
address these and several other remaining needs for scientific data infrastructure, we
can take inspiration from federated systems.

10.2.4 Linked Data or Surveillance Capitalism?

Having become a dense and consistent historical reality, language forms the locus
of tradition, of the unspoken habits of thought, of what lies hidden in a people’s
mind; it accumulates an ineluctable memory which does not even know itself as
memory. Expressing their thoughts in words of which they are not the masters,
enclosing them in verbal forms whose historical dimensions they are unaware of,
men believe that their speech is their servant and do not realize that they are sub-
mitting themselves to its demands.

Michel Foucault — The Order of Things [333]

There is no shortage of databases for scientific data, but their traditional structure
chokes on the complexity of representing multi-domain data. Typical relational
databases require some formal schema to structure the data they contain, which
have varying reflections in the APIs used to access them and interfaces built atop
them. This broadly polarizes database design into domain-specific and domain-
general20. This design pattern results in a fragmented landscape of databases with 20 To continue the analogy to bittorrent trackers,

an example domain-specific vs. domain-general
dichotomy might be What.cd (with its specific
formatting and aggregation tools for representing
artists, albums, collections, genres, and so on)
vs. ThePirateBay (with its general categories of
content and otherwise search-based aggregation
interface)

limited interoperability. How shall we link the databases? In this section we’ll con-
sider the Icarian promise of creating the great unified database of everything as a
way of motivating an alternative that blends linked data [334] with federated sys-
tems against our peer to peer backbone in the next section.

Domain-specific databases require data to be in one or a few specific formats, and
usually provide richer tools for manipulating and querying by metadata, visualiza-
tion, summarization, aggregation that are purpose-built for that type of data. For
example, NIH’s Gene tool has several visualization tools and cross-referencing tools
for finding expression pathways, genetic interactions, and related sequences (Figure
xx). This pattern of database design is reflected at several different scales, through in-
stitutional databases and tools like the Allen brain atlases or observatory, to lab- and
project-specific dashboards. This type of database is natural, expressive, and power-
ful — for the researchers they are designed for. While some of these databases allow
open data submission, they often require explicit moderation and approval to main-
tain the guaranteed consistency of the database, which can hamper mass use.

General-purpose databases like figshare and zenodo21 are useful for the mass aggre- 21 No shade to Figshare, which, among others,
paved the way for open data and are a massively
useful thing to have in society.

gation of data, typically allowing uploads from most people with minimal barriers.
Their general function limits the metadata, visualization, and other tools that are
offered by domain-specific databases, however, and are essentially public, versioned,
folders with a DOI. Most have fields for authorship, research groups, related publi-
cations, and a single-dimension keyword or tags system, and so don’t programmati-
cally reflect the metadata present in a given dataset.

The dichotomy of fragmented, subdomain-specific databases and general-purpose

https://academictorrents.com/
https://academictorrents.com/
https://www.ncbi.nlm.nih.gov/gene/12550
https://connectivity.brain-map.org/
http://observatory.brain-map.org/visualcoding/
https://figshare.com/
https://zenodo.org/
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Figure 10.2: NIH’s Gene tool includes many
specific tools for visualizing, cross-referencing, and
aggregating genetic data. Shown is the “genomic
regions, transcripts, and product” plot for Mouse
Cdh1, which gives useful, common summary
descriptions of the gene, but is not useful for, say,
visualizing reading proficiency data from
educational research.

databases makes combining information from across even extremely similar subdis-
ciplines combinatorically complex and laborious. In the absence of a formal in-
teroperability and indexing protocol between databases, even finding the correct
subdomain-specific database often comes down to pure luck. It also puts researchers
who want to be good data stewards in a difficult position: they can hunt down the
appropriate subdomain specific database and risk general obscurity; use a domain-
general database and make their work more difficult for themselves and their peers
to use; or spend all the time it takes to upload to multiple databases with potentially
conflicting demands on format.

What can be done? There are a few naïve answers from standardizing different parts
of the process: If we had a universal data format, then interoperability becomes triv-
ial. Conversely, we could make a single ur-database that supports all possible for-
mats and tools.

The notion of a universal database system almost immediately runs aground on the
reality that organizing knowledge is intrinsically political. Every subdiscipline has
conflicting representational needs, will develop different local terminology, allocate
differing granularity and develop different groupings and hierarchies for the same
phenomena. At their mildest, differences in representational systems can be incom-
patible, but at their worst they can reflect and reinforce prejudices and become the
site of expression for intellectual and social power struggles [335, 336, 337, 338]
. Every subdiscipline has conflicting practical needs, with infinite variation in pri-
vacy demands, different priorities between storage space, bandwidth, and computa-
tional power, and so on. In all cases the boundaries of our myopia are impossible to
gauge: we might think we have arrived at a suitable schema for biology, chemistry,
and physics… but what about the historians?

Matthew J Bietz and Charlotte P Lee articulate this tension in their ethnography of
metagenomics databases:
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“Participants describe the individual sequence database systems as if they were
shadows, poor representations of a widely-agreed-upon ideal. We find, however,
that by looking across the landscape of databases, a different picture emerges. In-
stead, each decision about the implementation of a particular database sys-
tem plants a stake for a community boundary. The databases are not so
much imperfect copies of an ideal as they are arguments about what the
ideal Database should be. […]

In the end, however, the system was so tailored to a specific set of research
questions that the collection of data, the set of tools, and even the social
organization of the project had to be significantly changed. New analysis
tools were developed and old tools were discarded. Not only was the database
ported to a different technology, the data itself was significantly restructured to
fit the new tools and approaches. While the database development projects had
begun by working together, in the end they were unable to collaborate. The sys-
tem that was supposed to tie these groups together could not be shielded
from the controversies that formed the boundaries between the commu-
nities of practice.” [339]

The pursuit of unified representation is an intimate part of the history of linked data,
which relies on “ontologies” or controlled vocabularies that describe a set of objects
(or classes) and the properties they can have. For example, schema.org maintains a
widely used set of hierarchical vocabularies to describe the fundamental things that
exist in the world, in particular the unfamiliar world in which a Person has a gender
and net worth but lacks a race [247] . At one extreme in the world of ontology
builders, the ideological nature of demarcating what is allowed to exist is as clear as
a klaxon (emphasis in original):

An exception is the Open Biomedical Ontologies (OBO) Foundry initiative,
which accepts under its label only those ontologies that adhere to the principles of
ontological realism. […] Ontologies, from this perspective, are representational
artifacts, comprising a taxonomy as their central backbone, whose representa-
tional units are intended to designateuniversals (such ashumanbeing and patient
role) or classes defined in terms of universals (such as patient, a class encompassing
human beings in which there inheres a patient role) and certain relations between
them. […]

BFO is a realist ontology [15,16]. This means, most importantly, that represen-
tations faithful to BFO can acknowledge only those entities which exist in (for
example, biological) reality; thus they must reject all those types of putative neg-
ative entities - lacks, absences, non-existents, possibilia, and the like [340]

In practice, because of the difficulty of changing the representation and encompass-
ing database systems on a dime, using these ontologies to link disparate datasets
tends to follow the pattern of metadata overlays where the structure of individual
databases are mapped onto one “unifying” ontology to allow for aggregation and
translation. This approach appears gentler than standardization at the level of indi-
vidual databases, but has the same problems kicked up one level of abstraction.

To concretize the problems with a globally unified database or metadata overlay,
the remainder of this section will trace the compromises and outcomes of the The
NIH’s “Biomedical Data Translator” project. The Translator project was initially

https://schema.org
https://schema.org/Person
https://schema.org/gender
https://schema.org/netWorth
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described in the 2016 Strategic Plan for Data Science as a means of translating be-
tween biomedical data formats:

Through its Biomedical Data Translator program, the National Center for Ad-
vancing Translational Sciences (NCATS) is supporting research to develop ways
to connect conventionally separated data types to one another to make them
more useful for researchers and the public. [243]

The original funding statement from 2016 is similarly humble, and press releases
through 2017 also speak mostly in terms of querying the data – though some am-
bition begins to creep in. By 2019, the vision for the project had veered sharply
away from anything a basic researcher might recognize as a means of translating be-
tween data types. In their piece “Toward a Universal Biomedical Translator,” then
in a feasibility assessment phase, the members of the Translator Consortium assert
that universal translation between biomedical data is impossible [341] . The impos-
sibility they saw was not that of conflicting political demands on the structure of
organization (as per [338] ), but of the sheer numeracy of the data and vocabularies
needed to describe them. The risk posed by a lack of a universal “language” was not
being able to index all possible data, rather than inaccuracy or inequity.

Undaunted by their stated belief in the impossibility of a universalizing ontology,
the Consortium created one in their biolink model [342, 343] . Biolink consists of
a hierarchy of basic classes: eg. a BiologicalEntity like a Gene, or a ChemicalEntity
like a Drug. Classes can then linked by any number of properties, or “Slots,” like a
therapeutic procedure that treats a disease.

The translator does not attempt to respond to the needs of researchers or labs who
might want to link their raw data splayed out across flash drives and file structures
whose chaos borders on whimsy. Instead, the Translator operates at the level of
“knowledge,” or “generally accepted, universal assertions derived from the accumu-
lation of information” [344] . Rather than translating between data types, the mean-
ing of “translation” shifted to meaning “translating data into knowledge” [341] .

To feed the Translator, Biolink sits “on top of” a collection of database APIs that
serve structured biomedical data, each called a “knowledge source.” Individual APIs
declare that they are able to provide data for a particular set of classes or slots, like
drugs that affect genetic expression, and are then made browsable from the Smar-
tAPI Knowledge Graph. Queries to individual APIs do not return “raw” data, but
return assertions of fact in the parlance of the Biolink model: this procedure treats
that disease, etc.

Because individual researchers do not typically represent their data in the form of
factual assertions, knowledge sources are constrained to “highly curated biomedi-
cal databases” or other aggregated systems. The NIH RePORTER tool gives an
overview of the way these knowledge sources are prepared when none already ex-
ist for a given Biolink class or predicate: automated text mining tools and a series of
domain-specific data provider projects, rather than via tools provided to researchers.

The collection of knowledge sources, linked to nodes and edges in the Biolink model,
are designed to be queried as a graph. To answer a query like “what drug treats
this disease?” the translator considers the graph of entities linked to the disease:
what symptoms does the disease have? what genes are linked to those symptoms?
which drugs act on those genes? and so on [345] . The form of the Translator as
a graph-based question answering machine bounds its application as a platform for

https://web.archive.org/web/20210709100523/https://ncats.nih.gov/news/releases/2016/feasibility-assessment-translator
https://web.archive.org/web/20210709171335/https://ncats.nih.gov/pubs/features/translator
https://biolink.github.io/biolink-model/docs/
https://biolink.github.io/biolink-model/docs/BiologicalEntity.html
https://biolink.github.io/biolink-model/docs/Gene.html
https://biolink.github.io/biolink-model/docs/ChemicalEntity.html
https://biolink.github.io/biolink-model/docs/Drug.html
https://biolink.github.io/biolink-model/docs/treats.html
http://www.smart-api.info/registry
https://github.com/NCATSTranslator/ReasonerAPI
http://www.smart-api.info/ui/adf20dd6ff23dfe18e8e012bde686e31
http://www.smart-api.info/portal/translator/metakg
http://www.smart-api.info/portal/translator/metakg
https://reporter.nih.gov/search/DShVUhB_ZUq0X5UWFjy5WQ/projects?shared=true
https://reporter.nih.gov/search/DShVUhB_ZUq0X5UWFjy5WQ/projects?shared=true
https://reporter.nih.gov/project-details/10548337
https://reporter.nih.gov/project-details/10056962
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researchers to guide their research and clinicians to guide their care [346] , rather
than a tool for linking data.

One primary example currently featured by NCATS is using the translator to pro-
pose novel treatments for drug-induced liver injury (DILI) [347] detailed in a 2021
conference paper [348] . To find a candidate drug, the researchers manually con-
ducted three API queries: first they searched for phenotypes associated with DILI
and selected “one of them”22 — “red blood cell count”. Then they queried for genes 22 Using the only API listed with a “related to”

link between disease and phenotypic feature,
SEMMEDDB, I was unable to find “Red blood
cell count” with DILI (C0860207) as either the
subject or object, and it is unclear why one would
prefer that to any number of other phenotypes
like “Fever” or the ominous symptom named
“Symptoms” (C1457887).

associated with red blood cell count to find telomerase reverse transcriptase (TERT),
and then finally for drugs that affect TERT to find Zidovudine. The directionality
of each of these relationships, high vs. low, increases vs. decreases, is unclear in each
case. A more recent report on the Translator repeated this pattern of manual query-
ing, arriving at a handful of different genes and drugs [344] .

While the current examples are highly manual, providing an array of results for
each query along with links to associated papers on pubmed, some algorithmic sys-
tem for ranking results is necessary to make use of the information in the extended
knowledge graph. Rather than just the first-order connections, it should be possi-
ble to make use of second, third, and n-th order connections to weight potential
results. Algorithmic medical recommendation systems have been thoroughly prob-
lematized elsewhere (eg. [349, 350, 351, 352] ). The primary ranking algorithm is
developed by a defense contractor (CoVar) who has23 named it ROBOKOP [353] 23 seemingly unironically
24. Though ROBOKOP functions with a simple weighted graph metric based on 24 which seems totally fine and normal.
citations and abstract text, the ranking system is intended to be extended with ma-
chine learning tools [353] that can be trained based on the way the provided answers
are used [341] . Algorithmic recommendation platforms are in a regulatory gray area
[354, 355] , but would arguably need to have interpretable results with clear prove-
nance to pass scrutiny. The DILI example uses a language model which explained
the recommendation of Zidovudine with all the clarity of “one of ‘DOWNREGU-
LATOR,’ ‘INHIBITOR,’ ‘INDIRECT DOWNREGULATOR’.”

The arrival at a biomedical question answering platform built atop an algorithmic
ranking system for a knowledge graph that queries 200+ aggregated data sources has
several qualities that should give us pause.

First, as with any machine-learning based system, the algorithm can only reflect the
implicit structure of its creation, including the beliefs and values of its architects
[356, 357], its training data and accompanying bias [358], and so on. The “mass
of data” approach ML tools lend themselves to, in this case, querying hundreds of
independently operated databases, makes dissecting the provenance of every entry
from every data provider effectively impossible. For example, one of the providers,
mydisease.info was more than happy to respond to a query for the outmoded defini-
tion of “transsexualism” as a disease [359] along with a list of genes and variants that
supposedly “cause” it - see for yourself. At the time of the search, tracing the source
of that entry first led to the disease ontology DOID:1234 which traced back into an
entry in a graph aggregator Ontobee (Archive Link), which in turn listed this github
repositorymaintained by a single person as its source25. This is, presumably, the 25 I submitted a pull request to remove it, but it

has not been merged more than 8 months later. A
teardrop in the ocean.

fragility and inconsistency in input data that the machine learning layer is intended
to putty over.

If the graph encodes being transgender as a disease, it is not farfetched to imagine
the ranking system attempting to “cure” it. In a seemingly prerelease version of
the translator’s query engine, ARAX, it does just that: in a query for entities with

https://smart-api.info/ui/1d288b3a3caf75d541ffaae3aab386c8
https://biothings.ncats.io/semmeddb/query?q=subject.umls%3AC0860207&facet_size=10&fetch_all=true&_sorted=true&format=json
https://biothings.ncats.io/semmeddb/query?q=object.umls%3AC0860207&facet_size=10&fetch_all=true&_sorted=true&format=json
https://mydisease.info
http://mydisease.info/v1/query?q=%22DOID%3A10919%22
https://web.archive.org/web/20211007053446/https://www.ebi.ac.uk/ols/ontologies/doid/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FDOID_1234
http://www.ontobee.org/ontology/DOID?iri=http://purl.obolibrary.org/obo/DOID_1234
https://web.archive.org/web/20210923110103/http://www.ontobee.org/ontology/DOID?iri=http://purl.obolibrary.org/obo/DOID_1234
https://github.com/jannahastings/mental-functioning-ontology
https://github.com/jannahastings/mental-functioning-ontology
https://github.com/jannahastings/mental-functioning-ontology/pull/8
https://arax.rtx.ai/?r=e891e6e6-44fd-4684-9d36-f94e3e81b554
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a biolink:treats link to gender dysphoria26, it ranks the standard therapeutics 26 To its credit, ARAX does transform the request
for DOID:10919 to MONDO:0001153 - gender
dysphoria.

[360, 361] Testosterone and Estradiol 6th and 10th of 11, respectively — behind a
recommendation for Lithium (4th) and Pimozide (5th) due to an automated text
scrape of two conversion therapy papers. 27. Queries to ARAX for treatments for 27 as well as a recommendation for “date allergenic

extract” from a misinterpretation of “to date”
in the abstract of a paper that reads “Cross-sex
hormonal treatment (CHT) used for gender
dysphoria (GD) could by itself affect well-being
without the use of genital surgery; however, to
date, there is a paucity of studies investigating the
effects of CHT alone”

gender identity disorder helpfully yielded “zinc” and “water,” offering a paper from
the translator group that describes automated drug recommendation as the only
provenance [362] . A query for treatments for DOID:1233 “transvestism” was pre-
dictably troubling.

Even if the curators do their best to prevent harmful queries and block searches for
“cures” to being trans, the graph-based nature of the system means that any given
entry will have unpredictable consequences on recommendations made from the
surrounding network of objects like genes, treatment history, and so on. If the op-
eration of the ranking algorithm is uninterpretable, as most are, or the algorithm it
itself proprietary, harmful input data could have long-range influence on both the
practice of medicine as well as the course of basic research without anyone being able
to tell. The Consortium also describes a system whereby the algorithm is continu-
ously updated based on usage of results in research or clinical practice [341] , which
stands to magnify the problem of algorithmic bias by uncritically treating harmful
treatment and research practices as training data.

The approach creates a fundamental tradeoff between algorithmic interpretability
and the system being useful at all. The paper cited in the 2021 DILI example as evi-
dence that the system gives plausible results is for a specific subclass of liver injuries
caused by anti-tuberculosis drugs [363] , highlighting the danger of automated rec-
ommendations from noisy data, but also calling into question what novel contribu-
tion the Translator made if telomeres were already implicated in DILI. The 2022
report gives examples where the results were already expected by the researchers, or
provided a series of papers that seems difficult to imagine being much more infor-
mative than a PubMed search. If the algorithmic recommendations are unexpected
— ie. the system provides novel information — the process of confirming them
appears to be near-identical to the usual process of reading abstracts and hopping
citation trees.

Perhaps most worrisome is the eventual fate of the project in the hands of the broader
ecosystem of orbiting information conglomerates. Centralized infrastructure projects
can be an opportunity for for-profit companies to “dance until the music stops” and
then scoop up any remaining technology when the funding dries up (so far roughly
$81.6 million since 2016 for the Translator [364] , and $84.7 million for the discon-
tinued NIH Data Commons pilot which morphed into the STRIDES program).
I have little doubt that the scientists and engineers working on the Translator are
doing so with the best of intentions — the real question is what happens to it after
it’s finished.

Knowledge graphs in particular are promising targets for platform holders. Per-
haps the most well known example is Google’s 2010 acquisition of Freebase (via
Metaweb) [365] , a graph of structured data with a wealth of properties for com-
mon people, places and things. Google incorporated it into their Knowledge Graph
[366] to populate its factboxes and make its search results more semantically aware
in its Hummingbird upgrade in 2013, the largest overhaul of its search engine since
2001 [367] , cementing its dominance as a search engine. The connection between
swallowing up knowledge organization systems into search engines is not inciden-
tal, but reflective of the broader pattern of enclosing basic digital infrastructure be-

https://arax.rtx.ai/?r=e891e6e6-44fd-4684-9d36-f94e3e81b554
https://arax.rtx.ai/?r=e891e6e6-44fd-4684-9d36-f94e3e81b554
https://pubmed.ncbi.nlm.nih.gov/2114800/
https://pubmed.ncbi.nlm.nih.gov/8839957/
https://pubmed.ncbi.nlm.nih.gov/24330520/
https://arax.ncats.io/?r=52703
https://arax.rtx.ai/?r=81249a42-b300-4dcf-94c9-7a9fe2f78237
https://reporter.nih.gov/search/kDJ97zGUFEaIBIltUmyd_Q/projects?sort_field=FiscalYear&sort_order=desc
https://reporter.nih.gov/search/H4LxgMGK9kGw6SeWCom85Q/projects?shared=true
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hind opaque platforms. Searching has a different set of cognitive expectations than
browsing a database: we expect search results to be “best effort,” not necessarily
complete or accurate, where when browsing a database it’s relatively clear when in-
formation is missing or inaccurate. For products packaged up into search platforms
by for-profit companies, it doesn’t have to actually work as long as it seems like it
does.

The platformatization of the knowledge graph, along with carefully worded terms
of service, is a clean means by which “good enough” results could be jackknifed into
an expanded system of biomedical surveillance. Since the algorithm needs continual
training, the translator has every incentive to suck up as much personal data as it
can28. For-profit platform providers as a rule depend on developing elaborate per- 28 A 2020 presentation in one of the Translator’s

github repositories describes methods for mining
individual clinical data [368]

sonal profiles for targeted advertising algorithmically inferred from available data29,

29 A patent from Google is telling about how
they view privacy concerns: whatever we can’t get
explicitly, we’ll infer to sell better ads!

“One possible method to improve ad targeting
is for ad targeting systems to obtain and use
user profiles. For example, user profiles may be
determined using information voluntarily given
by users (e.g., when they subscribe to a service).
This user attribute information may then be
matched against advertiser specified attributes of
the ad (e.g., targeting criteria). Unfortunately, user
profile information is not always available since
many Websites (e.g., search engines) do not require
subscription or user registration. Moreover, even
when available, the user profile may be incomplete
(e.g., because the information given at the time of
subscription may be limited to what is needed for
the service and hence not comprehensive, because
of privacy considerations, etc.). Furthermore,
advertisers may need to manually define user
profile targeting information. In addition, even if
user profile information is available, advertisers may
not be able to use this information to target ads
effectively.” [369]

that naturally includes diagnosed or inferred disease — a practice they explicitly de-
scribe in the patents for the targeting technology[369] , have gone to court to defend
[370, 371] , and formed secretive joint projects with healthcare systems to pursue
[372] .

So while an algorithmic recommendation tool may have limited use for the basic
researchers it was originally intended for, it is likely to be extremely useful for the
booming business of “personalized medicine.” Linking biomedical and patient data
in a single platform is a natural route towards a multisided market where records
management apps are sold to patients, treatment recommendation systems are sold
to clinicians, research tools and advertising opportunities are sold to pharmaceutical
companies, risk metrics are sold to insurance companies, and so on.

Multiple information conglomerates are poised to capitalize on the translator project.
Amazon already has a broad home surveillance portfolio [373] , and has been aggres-
sively expanding into health technology [374] and even literally providing health
care [375] , which could be particularly dangerous with the uploading of all scien-
tific and medical data onto AWS with entirely unenforceable promises of data pri-
vacy through NIH’s STRIDES program [376] .

RELX, parent of Elsevier, is as always the terrifying elephant in the room. In addi-
tion to distribution rights for a large proportion of scientific knowledge and a col-
lection of research databases, it also sells a clinical reference platform in ClinicalKey,
point of service products for planning patient care with ClinicalPath, medical educa-
tion tools, and pharmaceutical advertisements designed to look like scientific papers
[377] , among others [378] . It also is explicitly expanding into “clinical decision sup-
port applications” [378] and recently embedded its medication management prod-
uct into Apple’s watchOS 9 [223] . Subsidiaries in RELX’s “Risk” market segment
sell risk profiles to insurance companies based on what they claim to be highly com-
prehensive profiles of harvested personal data. The Translator infrastructure is a per-
fect keystone to unify these products: after the NIH fronts the money to develop it
and lends the credibility of basic research, RELX can cheaply expand its surveillance
apparatus to enhanced medical risk profiles to insurers, priority placement in candi-
date drug rankings to pharmaceutical companies, and augment its ranking systems
for funders and employers to include some proprietary metric of “promisingness”
to encourage researchers to follow its research recommendations. This isn’t spec-
ulative — it can just strap whatever clinical data Translator gains access to into its
existing biomedical knowledge graph.

Even assuming the Translator works perfectly and has zero unanticipated conse-

https://github.com/NCATSTranslator/Translator-All
https://amazon.care/
https://amazon.care/
https://www.elsevier.com/solutions/biology-knowledge-graph
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quences, the development strategy still reflects the inequities that pervade science
rather than challenge them. Biopharmaceutical research, followed by broader biomed-
ical research, being immediately and extremely profitable, attracts an enormous quan-
tity of resources and develops state of the art infrastructure, while no similar infras-
tructure is built for the rest of science, academia, and society.

The eventual form of the Translator follows from a series of decisions centered around
the intended universality of the system. From the funding statement in 2016, the
system was conceptualized as an “informatics platform” intended to “bring together
all biomedical and health data types.” The surrounding background of cloud-based
database storage imagined by the Strategic Plan for Data Science immediately con-
strained the design to consist of APIs that served small quantities of aggregated data,
rather than potentially large quantities of raw data. Together with a platform, rather
than tool-based approach, a system that allowed individual researchers to link and
make sense of the subtlety of own their data was precluded from the start.

From these constraints, the form of the BioLink model comes into focus: high-level
classes and logical relationships between them as asserted by a large number of sepa-
rate knowledge sources. Since the data from each of these sources is heterogeneous,
relatively uncurated, and potentially numerous for any given graph-based query, the
need for a machine learning layer to make sense of it follows. The conceptualization
of BioLink as a universal ontology seems to follow the lineage of the “neat” thought
style [247] that emphasizes “deductive inference through logical rules” [343] or oth-
erwise computing derived information from the structure of the knowledge graph
rather than browsing the graph itself. Together, these constraints and design logics
bring us to the form of the Translator as a graph-based query engine.

The Translator Consortium justifiably takes pride in its social organizing systems
[379] — coordinating 200 researchers and engineers from dozens of institutions
is no small feat. This system of social organization seems to have lent itself towards
developing the individual components with an eye for them to be understood by the
rest of the consortium rather than with the intention of inviting collaboration from
the broader research community30. The very notion of a platform indicates that 30 The descriptions of difficulty in interfacing

the components of the project internally are
littered throughout their public-facing documents:
eg. “A lot of the work has been about defining
standards, so that the components that each of
the 15 teams are building can talk to each other”
[345] , “In part due to the speed with which the
program has progressed, team members also have
found it challenging to coordinate milestones and
deliverables across teams and align the goals of the
Translator program with the goals of their own
nonTranslator research projects.” [379] . These
problems are, of course, completely reasonable. My
comment here merely suggests that solving these
problems, particularly on the self-described tight
timeline of the Translator’s development, may have
edged out concerns for engagemenent with the
broader research community.

it is something that they build and we use: There is no explicit means for proposing
changes to the BioLink model, to pick and choose how answers are ranked or queries
are performed, etc. This is broadly true of platform-based scientific tools, especially
databases, and contributes to how they feel: they feel disconnected with our work,
don’t necessarily help us do it more easily or more effectively, and contributing to
them is a burdensome act of charity (if it is possible at all).

Given the real need for somemeans of combining heterogeneous data from disparate
sources, what could have been done differently?

Problematizing the need for a system intended to link all or even most biomedi-
cal data in a single mutually coherent system opens the possibility for a very differ-
ent data linking infrastructure. Perhaps paradoxically, any universal, logically com-
plete schema intended to support algorithmic inference projects a relatively circum-
scribed group of people for whom it would be useful: nearly all of the publicly de-
scribed use-cases are oriented around finding new drugs or targets to treat disease,
presumably in part because that’s what preoccupies the ontology. Rather than a set
of generalizable tools for linking data, the need for universality strongly constrains
the form of data that can be represented by the system, and its platform structure
constrains its uses to only those imagined by the platform designers. Every infras-

https://web.archive.org/web/20210709100523/https://ncats.nih.gov/news/releases/2016/feasibility-assessment-translator


134 swarmpunk: rough consensus and running code in brains, machines, and society

tructural model is an act of balancing constraints, and prioritizing “all data” seems
to imply “for some people.” Who is supposed to be able to upload data? change the
ontology? inspect the machine learning model? Who is in charge of what? Who is
a knowledge-graph query engine useful for?

Another conceptualization might be building systems for all people that can embed
with existing practices and help them do their work which typically involves accessing
some data. We can imagine a system designed to integrate data with schemas written
in the vernacular of communities of knowledge work. Rather than the dichotomy
of one singular database vs. many fragmented and incompatible databases, we can
imagine a pluralistic system capable of supporting multiple overlapping and poten-
tially conflicting representations, governable and malleable in local communities of
practice. Taking seriously the notion of “translation,” we could stand to learn from
linguistics and translation studies: rather than attempting to project the dialects of
each subdiscipline into some “true” meta-framework (a decidedly colonial project
[380] ), we could resist the urge for homogenization and preserve the multiplicity
of representation, embracing the imperfection of mappings between heterogeneous
representational systems at multiple scales without resigning ourselves to completely
isolated incompatibility.

Maybe we don’t want a universal system that presents itself with the authority of
truth to be mined and spun off into derivative platforms by information conglomer-
ates. We might abandon the techno-utopianism of a globally consistent schema that
supports arbitrary logical inference by acknowledging that those inferences would
always be colored by the decisions embedded in the structure of the system, unknow-
able beneath the shrouding weights of its ranking model.

Instead can we imagine a properly human data infrastructure? One that preserves
the seams and imperfections in our representational systems, that is designed to rep-
resent precisely the contingency of representation itself? (eg. see [381, 382]). We
might start with the propositional nature of links and mappings between formats —
that rather than a divine received truth, the relationships between things are contex-
tual and created. We could find grounding in use, that the schemas and mappings
between them should arise from the need to link representations within the context
of some problem, rather than to resolve their difference.

Picking up the thread of our peer to peer data sharing backbone, we might start to
imagine the boistrous multiplicity of an infrastructure based around communica-
tion and expression, rather than platformatized perfection.

10.2.5 Folk Federation

Human language thrives when using the same term to mean somewhat different
things, but automation does not. Tim Berners-Lee (1999) The Semantic Web
[383]

Wittgenstein’s contribution to communism was his robust proof of the propo-
sition that there is no private language, but in our time, privatized languages are
everywhere. And not just languages: Images, codes, algorithms, even genes can
become private property, and in turn private property shapes what we imagine
the limits and possibilities of this information to be. McKenzie Wark (2021)
Capital Is Dead: Is This SomethingWorse? [216]



a draft of decentralized scientific infrastructure 135

To structure our p2p data sharing system, we should use Linked Data. Linked data
is at once exceptionally simple and deceptively complex, a set of technologies and
social histories. In this section we will introduce the notion of linked data, extend it
for a p2p context, and then add a twist from federated systems.31 Our goal will be to 31 There is a lot of subtlety to the terminology

surrounding “federated” and the typology of
distributed systems generally, I am using it in
the federated messaging sense of forming groups
of people, rather than the strict term “federated
databases” which do imply a standardized schema
across a federation. The conception of distributed,
autonomous databases described by the DataLad
team [384] is a bit closer to my meaning. In the
ActivityPub world, federations refer to a single
homeserver under which many people can sign up.
We mean something similar but distinct: people
that have autonomous “homeservers” in a peer to
peer system, typically multiple identities for a single
person rather than many people on a single server,
that can combine into federations with particular
governance structures and technological systems
attached.

articulate the foundation for a “protocol of protocols,” a set of minimal operations
by which individual people can create, extend, borrow, and collectively build a space
of linked folk schemas and ontologies, or folksonomies.

When last we left it, we had developed the notion of a p2p system to the point where
we had big torrentlike piles of files with a few additional features like versioning
and sharded storage. We need to add an additional layer of metadata that exposes
information about the contents of each of these file piles. But what is that metadata
made of?

The core format of linked data is the Resource Document Format (RDF) [385] and
its related syntaxes like Turtle [386] . Typical hyperlinks are duplet links — linking
from the source to the target. The links of linked data are instead triplet links that
consist of a subject, a predicate that describes the link, and an object that is linked
to. Subjects and objects (generally, nodes) have particular types like a number, or
a date, or something more elaborate like an Airline or Movie that have particular
sets of predicates or properties: eg. a Movie has a director property which links
to a Person. A Person has an address which links to a PostalAddress, and so
on. Types and properties are themselves defined in vocabularies (or, seemingly in-
terchangeably [387] , ontologies and schemas) by a special subset of RDF schema
modeling classes and properties [388] . Linked data thus consists of semantically
annotated graphs of linked nodes32. 32 Or, precisely, a “directed labeled graph” (DLG).

Linked data representations are very general and encompass many others like rela-
tional [389] and object-oriented models, but have a few properties that might be
less familiar. The first is that triplet links have the status of an utterance or a propo-
sition: much like typical duplet hyperlinks, anyone can make whatever links they
want to a particular object to say what they’d like about it. As opposed to object-
oriented models where a class is defined beforehand and its attributes or data are
stored “within” the object, RDF schemas are composed of links just like any other,
and the link, object, and predicate can all be stored in separate places by different
people [390] . For example:

One person may define a vehicle as having a number of wheels and a weight
and a length, but not foresee a color. This will not stop another person making
the assertion that a given car is red, using the color vocabulary from elsewhere.
[390]

Linked data has an ambivalent history of thought regarding the location and dis-
tribution of ontology building. Its initial formulation came fresh from the recent
incendiary success of the internet, where without any system of organization “peo-
ple were frightened of getting lost in it. You could follow links forever.” [390]
Linked data was conceptualized to be explicitly without authoritative ontologies,
but intended to evolve like language with local cultures of meaning meshing and
separating at multiple scales [383] . Perhaps one of the pieces that went missing
when moving between writing about the semantic web and its realization in stan-
dards and protocols is that this language-like conception of links requires quartet,
rather than triplet links: author, subject, object, predicate. The author is encoded
implicitly in the source of the vocabulary: “Users are given […] a single URI […] for

https://schema.org/Airline
https://schema.org/Movie
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each persona they want to have,” [231] so theoretically ontologies have the status of
“schema.org says this.” Without a first-class notion of author in the links themselves
there is little means of “forking” a vocabulary, or having multiple versions of a term
with the same name but different authors.

The dream of mass automaticity, however, with computational “agents” capable
of seamlessly crawling consistent graphs of linked data to extract surplus meaning
necessarily requires that the meaning of terms does not “mutate” between different
uses. For many early linked data architects the resolution was more automation, to
use additional semantic structure about the equivalence between different ontolo-
gies as a means of estimating how trustworthy a particular result was. This tension
is sewn into one of its most well known ontologies, the Simple Knowledge Organi-
zation System (skos) [391] , which is intended to represent relationships between
terms and vocabularies [392] .

The fluidity of the original vision for linked data never emerged, however, and is re-
membered instead as being monstrously overcomplicated [246, 393] . While HTML,
CSS, and Javascript developed a rich ecosystem of abstractions that let people cre-
ate websites without directly writing HTML, the same never materialized for RDF.
While linked data entities are intended to be designated by the very general notion of
a URI, in practice URIs are near-synonymous with URLs, and maintaining a set of
URLs is hard. The initial vision for URI/URL-based linked data identifiers seems
to have been, in part, based on a miscalculation of the centralizing effect of the DNS
system, which makes them expensive and rarer than they need to be for each person
to have their own33. In the absence of interfaces for manipulating linked data and 33 Tim Berners-Lee, in his 1999 “Weaving the

Web,” was already describing how the centraliza-
tion of the DNS system compromised some of his
loftier ambitions for the web: “It is essential that
domain names be primarily owned by the people
as a whole, and that they be governed in a fair and
reasonable way by the people, for the people.” and
“[DNS Centralization] also shows how a technical
decision to make a single point of reliance can be
exploited politically for power and commercially
for profit, breaking the technology’s independence
from these things, and weakening the Web as a
universal space.” [394] The Solid project instead
uses OpenID for identification, rather than, eg. a
FOAF record located at a URL.

the pain of hosting them, the dream of a distributed negotiation over language-like
ontologies was largely confined to information scientists and what became corpo-
rate knowledge graphs. For those war-weary RDF vets, I will again clarify that we
are describing the desirable qualities of RDF while trying to learn from its failures.

In our revival of this dream we are describing a system where heterogeneous data
is indicated by its metadata, rather than representing all data in a uniform format
— similarly to the mixture of RDF and non-RDF data in the linked data platform
standard [395] . We want to handle a broad span of heterogeneity: data with dif-
ferent naming schemes, binary representations, sizes, nested structures, and so on.
The first task is to describe some means of accessing this heterogeneous data in a
reasonably standard way despite these differences.

While that may seem a tall order, researchers already do it, it’s just mostly done man-
ually whenever we want to use anyone else’s data. One way of characterizing the task
at hand is systematizing the idiosyncratic paths by which a researcher might dump
out a .csv file from a sql database to load into MATLAB to save in the .mat format
with the rest of their data. To do that we can draw from a parallel body of thought
on federated databases.

Like our p2p system, federated systems consist of distributed, heterogeneous, and au-
tonomous agents that implement some minimal agreed-upon standards for mutual
communication and (co-)operation. Federated databases were proposed in the early
1980’s [396] and have been developed and refined in the decades since as an alterna-
tive to either centralization or non-integration [397, 398, 399] . Their application to
the dispersion of scientific data in local filesystems is not new [400, 401, 402] , but
their implementation is more challenging than imposing order with a centralized
database or punting the question into the unknowable maw of machine learning.



a draft of decentralized scientific infrastructure 137

Amit Sheth and James Larson, in their reference description of federated database
systems, describe design autonomy as one critical dimension that characterizes
them:

Design autonomy refers to the ability of a component DBS to choose its own
design with respect to any matter, including

• (a) The data being managed (i.e., the Universe of Discourse),

•(b) The representation (data model, query language) and the naming of the
data elements,

• (c) The conceptualization or semantic interpretation of the data (which
greatly contributes to the problem of semantic heterogeneity),

•(d) Constraints (e.g., semantic integrity constraints and the serializability cri-
teria) used to manage the data,

• (e) The f unctionality of the system (i.e., the operations supported by sys-
tem),

• (f) The association and sharing with other systems, and

• (g) The implementation (e.g., record and file structures, concurrency control
algorithms).

Susanne Busse and colleagues add an additional dimension of evolvability, or the
ability of a particular system to adapt to inevitable changing uses and requirements
[400] .

In order to support such radical autonomy and evolvability, federated systems need
some means of translating queries and representations between heterogeneous com-
ponents. The typical conceptualization of federated databases have five layers that
implement different parts of this reconciliation process [403] :

• A local schema is the representation of the data on local servers, including the
means by which they are implemented in binary on the disk

• A component schema serves to translate the local schema to a format that is
compatible with the larger, federated schema

• An export schema defines permissions, and what parts of the local database are
made available to the federation of other servers

• The federated schema is the collection of export schemas, allowing a query to be
broken apart and addressed to different export schemas. There can be multiple
federated schemas to accomodate different combinations of export schemas.

• An external schema can further be used to make the federated schema better
available to external users, but in this case since there is no notion of “external” it
is less relevant.

This conceptualization provides a good starting framework and isolation of the dif-
ferent components of a database system, but a peer-to-peer database system has dif-
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ferent constraints and opportunities [404] . In the strictest, “tightly coupled” fed-
erated systems, all heterogeneity in individual components has to be mapped to a
single, unified federation-level schema. Loose federations don’t assume a unified
schema, but settle for a uniform query language, and allow multiple translations
and views on data to coexist. A p2p system naturally lends itself to a looser fed-
eration, and also gives us some additional opportunities to give peers agency over
schemas while also preserving some coherence across the system. I will likely make
some database engineers cringe, but the emphasis for us will be more on building a
system to support distributed social control over the database, rather than guaran-
teeing consistency and transparency between the different components.

Let us take the notion of a loosely coupled systems to its extreme, and invert the
meaning of federation as it is used in other systems like ActivityPub: rather than a
server-first federation, where peers create accounts on servers that define their op-
eration and the other servers they federate with, ours will be peer-first federation.
In this system, individual peers will maintain their own vocabularies and be able
to make them available to other peers. Peers can directly connect to one another,
but can also federate into groups, which can federate into groups of groups, and so
on. A peer will implement the local, component, and export schema with a client
that handles requests for vocabularies and and datasets according to their scheme of
permissions. Translation from a metadata-based query to a particular binary repre-
sentation of a file, whether it be in a relational database, binary, file, or otherwise,
will also be supported by vocabularies that indicate the necessary code.

Clearly, we need some form of identity in the system so that a peer can have their
links unambiguously identified and discovered. This is a challenging problem that
we leave open here, but strategies ranging from URI-based resolution likeusername@domain.com,
to locally-held cryptographic key based identity, to decentralized systems like the
w3c’s Decentralized Identifiers [405] would suffice. For the sake of example, let’s
make identity simple and flat, denoted in pseudocode as@username. Someone would
then be able to use their @namespace as a root, under which they could refer to their
data, schemas, and so on, which will be denoted @name:subobject (see this notion
of personal namespaces for knowledge organization discussed in early wiki culture
here [406] ). Let us also assume that there is no categorical difference between
@usernames used by individual researchers, institutions, consortia, etc. — everyone
is on the same level.

To illustrate the system by example, we pick up where we left off earlier with a peer
who has their data in some discipline-specific format, which let us assume for the
sake of concreteness has a representation as an OWL schema.

That schema could be “owned” by the @username corresponding to the standard-
writing group — eg @nwb for neurodata without borders. In all the following exam-
ples, we will use a turtle-ish syntax that is purposely pseudocode with the intention of
demonstrating general qualities without being concerned with syntactic correctness
or indicating one syntax in particular. Our dataset might look like this:

@base @jonny

<#my-data>
a @nwb:NWBFile
@nwb:general:experimenter @jonny
@nwb:ElectricalSeries

https://www.w3.org/OWL/
https://www.w3.org/TR/turtle/
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.electrodes [1, 2, 3]

.rate 30000

.data [...]

Unpacking the pseudocode, this indicates:

• We declare a @base context underneath my identity, @jonny,

• Underneath the base, individual objects are declared with their name like<#object-name>,
a shorthand for <@base:object-name>. In this case I have made a dataset identi-
fied as @jonny:my-data.

• I have identified the type of this object with thea token, in this case a@nwb:NWBFile

• Subsequent lines indicate particular properties of the indicated type and their
value, specifically I have indicated that the @nwb:general:experimenter is me,
@jonny, and that the dataset also contains a @nwb:ElectricalSeries. While my
identity object might have additional links like an @ORCID:ID, we can assume
some basic inference that resolves my identity to a string as specified in the NWB
specification, or else specify it explicitly as @jonny:name

• Additional subproperties are assigned with a leading ., so .electrodes would
resolve to @nwb:ElectricalSeries:electrodes.

How would my client know how to read and write the data to my disk so i can use
and share it? In a system with heterogeneous data types and database implementa-
tions, we need some means of specifying different programs to use to read and write,
different APIs, etc. This too can be part of the format specification. Suppose the
HDF5 group (or anyone, really!) has a namespace @hdf that defines the properties of
an @hdf:HDF5 file, basic operations like Read, Write, or Select. NWB could specify
that in their definition of @nwb:NWBFile:

<@nwb:NWBFile>
a @hdf:HDF5

.isVersion "x.y.z"

.hasDependency "libhdf5"=="x.y.z"
usesContainer @nwb:NWBContainer

So when I receive a request for the raw data of my electrical series, my client knows to
use the particular methods from the HDF5 object type to index the data contained
within the file.

I have some custom field for my data, though, which I extend the format specifica-
tion to represent. Say I have invented some new kind of solar-powered electrophys-
iological device — the SolarPhys2000 — and want to annotate its specs alongside
my data.

<#SolarEphys>
extends @nwb:NWBContainer

UsedWith @jonny:hw:SolarPhys2000
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ManufactureDate
a @schema:Date

InputWattageSeries
extends @nwb:ElectricalSeries

sunIntensity
a @nwb:TimeSeries

Here I create a new extension@jonny:SolarEphys thatextends the@nwb:NWBContainer
schema. We use extends rather than a because we are adding something new to
the description of the container rather than making a container to store data. I de-
clare that this container is UsedWith our SolarPhys2000 which we have defined else-
where in our hw namespace using some hardware ontology. I then add two new
fields, ManufactureDate and InputWattageSeries, declaring types from, for exam-
ple @schema:Date and @nwb.

The abstraction around the file implementation makes it easier for others to con-
sume my data, but it also makes it easier for me to use and contribute to the system.
Making an extension to the schema wasn’t some act of charity, it was the most direct
way for me to use the tool to do what I wanted. Win-win: I get to use my fancy new
instrument and store its data by extending some existing format standard. We are
able to make my work part of a cumulative schema building effort by aligning the
modalities of use and contribution.

For the moment our universe is limited only to other researchers using NWB. Con-
veniently, the folks at NWB have set up a federating group so that everyone who uses
it can share their format extensions. In the same way that we can use schemas to refer
to code as with our HDF5 files, we can use it to indicate the behavior of clients and
federations. Say we want to make a federating peer that automatically Accepts re-
quest toJoin and indexes any schema that inherits from their base@nwb:NWBContainer.
Let’s say @feddefines some basic properties of our federating system — it constitutes
our federating “protocol” — and loosely use some terms from the ActivityStreams
vocabulary as @as

<@nwbFederation>
a @fed:Federation
onReceive

@as:Join @as:Accept
allowSchema

extensionOf @nwb:NWBContainer

Now anyone that is a part of the @nwbFederation would be able to see the schemas
we have submitted, sort of like a beefed up, semantically-aware version of the existing
neurodata extensions catalog. In this system, many overlapping schemas could exist
simultaneously under different namespaces, but wouldn’t become a hopeless clutter
because similar schemas could be compared and reconciled based on their semantic
properties.

Now that I’ve got my schema extension written and submitted to the federation,
time to submit my data! Since it’s a p2p system, I don’t need to manually upload it,
but I do want to control who gets it. By default, I have all my NWB datasets set to

https://schema.org/Date
https://www.w3.org/ns/activitystreams#class-definitions
https://nwb-extensions.github.io/
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be available to the @nwbFederation , and I list all my metadata on, say the Society
for Neuroscience’s @sfnFederation.

<#globalPermissions>
a @fed:Permissions
permissionsFor @jonny

federatedWith
name @nwbFederation
@fed:shareData

is @nwb:NWBFile

federatedWith
name @sfnFederation
@fed:shareMetadata

Let’s say this dataset in particular is a bit sensitive — say we apply a set of permission
controls to be compliant with @hhs.HIPAA — but we do want to make use of some
public server space run by our Institution, so we let it serve an encrypted copy that
those I’ve shared it with can decrypt.

<#datasetPermissions>
a @fed:Permissions
permissionsFor @jonny:my-data

accessRuleset @hhs:HIPAA
.authorizedRecipient <#hash-of-patient-ids>

federatedWith
name @institutionalCloud
@fed:shareEncrypted

Now I want to make use of some of my colleagues data. Say I am doing an exper-
iment with a transgenic dragonfly and collaborating with a chemist down the hall.
This transgene, known colloquially in our discipline as @neuro:superstar6 (which
the chemists call @chem:SUPER6) fluoresces when the dragonfly is feeling bashful,
and we have plenty of photometry data stored as @nwb:Fluorescence objects. We
think that its fluorescence is caused by the temperature-dependent conformational
change from blushing. They’ve gathered NMR and Emission spectroscopy data in
their chemistry-specific format, say @acs:NMR and @acs:Spectroscopy.

We get tired of having our data separated and needing to maintain a bunch of pesky
scripts and folders, so we decide to make a bridge between our datasets. We need to
indicate that our different names for the gene are actually the same thing and relate
the spectroscopy data.

Let’s make the link explicit, say we use an already-existing vocabulary like the “simple
knowledge organization system” for describing logical relationships between con-
cepts: @skos?

<#links:super6>

https://www.w3.org/2009/08/skos-reference/skos.html
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@neuro:superstar6
@skos:exactMatch @chem:SUPER6

Our@nwb:Fluorescencedata has the emission wavelength in its@nwb:Fluorescence:excitation_lambda
property34, which is the value of their @acs:Spectroscopy data at a particular value 34 not really where it would be in the standard, but

again, for the sake of example…of its wavelength. Unfortunately, wavelength isn’t metadata for our friend, but
does exist as a column in the @acs:Spectroscopy:readings table, so where we typ-
ically have a singular value they have a set of measurements. Since the same informa-
tion has a structurally different meaning across disciplines, we dont expect there to
be an automated 1:1 mapping between them, but presumably their data format also
specifies some means of reading the data akin to the HDF5 methods indicated by
our NWB data format so we can add an additional translation later like @math:mean
and pick it up in our analysis tools.

<#links:lambda>
@acs:Spectroscopy:readings:wavelength

@skos:narrowMatch @nwb:Fluorescence:excitation_lambda
@skos:note

"Multiple spectrographic readings are
aggregated to a single excitation lambda"

@translate:aggregate @math:mean

This makes it much easier for us to index our data against each other and solves a
few real practical problems we were facing in our collaboration. We don’t need to
do as much cleaning when it’s time to publish the data since it can be released as a
single linked entity.

Though this example is relatively abstract (which metadata from spectroscopy read-
ings would need to match which in a fluorescence series to compare wavelengths to
lambda?), it serves as an example in its own right of the quasi-inversion of reason-
ing that we can make use of in our particular version of linked data with code. We
refer to the general notion of taking a @math:mean, but don’t specify a particular
implementation of it. Other package maintainers could indicate that their func-
tion implements it, so we could be prompted to choose one when resolving the link.
Alternatively, if we specified our aggregation used @numpy:mean, we could trace it
backwards to find which general operation it implements and choose a different
one. Since the objects of any triplet link have their own type, we can use the context
of the link to infer how to use it.

Rinse and repeat our sharing and federating process from our previous schema ex-
tension, add a little bit of extra federation with the @acs namespace, and in the nor-
mal course of our doing our research we’ve contributed to the graph structure link-
ing two common data formats. Our link is one of many, and is a proposition that
other researchers can evaluate in the context of our project rather than as an author-
itative reference link. We might not have followed the exact rules, but we have also
changed the nature of rules — rather than logical coherence guaranteed a priori by
adherence to a specification language, much like language the only rules that matter
are those of use. We may have only made a few links rather than a single authorata-
tive mapping, but if someone is interested in compiling one down the line they’ll
start off a hell of a lot further than if we hadn’t contributed it! Rather than this for-
mat translation happening ad-hoc across a thousand lab-specific analysis libraries,



a draft of decentralized scientific infrastructure 143

we have created a space of discourse where our translation can be contextually com-
pared to others and negotiated by the many people concerned, rather than handed
down by a standards body.

Queries across what amounts to the federated schema, in the federated database par-
lance, are by design less seamless than they would be with centrally governed schema
— which is a feature, not a bug. While this example deals with relatively dry fluores-
cence and spectrographic data, if this system were to expand to clinical, cultural, and
personal data, the surveillance economy that emerged subsequent to they heydey of
the semantic web has made it abundantly clear that we don’t necessarily want arbi-
trary actors to be able to index across all available data. It is much more valuable to
have low-barrier, vernacular expression usable by collections of subdisciplines and
communities of people than a set of high-barrier, fixed, logically correct schemas.
Researchers and people alike typically are only concerned with using the informa-
tion within or a few hops outside of their local systems of meaning, so who is a total-
izing database of everything for? This framing of linked data, by rejecting the goal of
global inference altogether, could be considered beyond even Lindsay Poirier’s con-
ception of “scruffiness” to something we might properly call vulgar linked data.

The act of translation is always an act of creation, and by centering the multiplicity
of links between extensible schemas we center the dialogic reality of that creation:
who says those things are equivalent? Since the act of using translating links between
schemas itself creates links — ie. I link to @<user>’s link to link my dataset and an-
other — we are both able to assess the status of consensus around which links are
used, as well as bring a currently invisible form of knowledge work into a system of
credit. As we will develop in the following two sections, this multiplicity also natu-
rally lends itself to a fluid space of tools that implement translations and analyses, as
well as a means of discussing and contextualizing the results.

We have been intentionally vague about the technical implementation here, but
there are many possible strategies and technologies for each of the components.

For making our peers and the links within their namespace discoverable we could
use a distributed hash table, or DHT, like bittorrent, which distributes references
to information across a network of peers (eg. [407] ). We could use a strategy like the
Matrix messaging protocol, where peers could federate with “relay” servers. Each
server is responsible for keeping a synchronized copy of the messages sent on the
servers and rooms it’s federated with, and each server is capable of continuing com-
munication if any of the others failed. We could use ActivityPub (AP) [408] , a
publisher-subscriber model where users affiliated with a server post messages to their
‘outbox’ and are sent to listening servers (or made available to HTTP GET requests).
AP uses JSON-LD [409] , so is already capable of representing linked data, and the
related ActivityStreams vocabulary [410] also has plenty of relevant action types
for creating, discussing, and negotiating over links (also see cpub). We could use a
strategy like IPFS where peers will voluntarily rehost each other’s data in order to
gain trust with one another. To preserve interoperability with existing systems, we
will want to make links referenceable from a URI (as IPFS does) as well as be able
to resolve multiple protocols, but beyond that the space of possible technologies is
broad.

Indexing and querying metadata across federated peers could make use of the SPARQL
query language [411] as has been proposed for biology many times before [412, 401,
402] . The distinction between metadata and data is largely practical — a query

https://en.wikipedia.org/wiki/Distributed_hash_table
https://matrix.org/
https://www.w3.org/TR/2018/REC-activitypub-20180123/
https://json-ld.org/
https://www.w3.org/TR/activitystreams-vocabulary/#activity-types
https://www.w3.org/TR/activitystreams-vocabulary/#dfn-create
https://www.w3.org/TR/activitystreams-vocabulary/#dfn-question
https://www.w3.org/TR/activitystreams-vocabulary/#dfn-tentativeaccept
https://github.com/openEngiadina/cpub
https://www.w3.org/TR/sparql11-federated-query/
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shouldn’t require transferring and translating terabytes of data — so we will need
some means of resolving references to data from metadata as per the linked data
platform specification [395] . A mutable/changeable/human-readable name and
metadata system that points to a system of unique content addressed identifiers has
been one need that has hobbled IPFS, and is the direction pointed to by DataLad35 35 DataLad [413, 384] and its application in

Neuroscience as DANDI are two projects that are
very close to what I have been describing here —
developing a p2p backend for datalad might even
be a promising development path towards it.

[384] . A parallel set of conversations has been happening in the broader linked data
community with regard to using ActivityPub as a way to index data on Solid.

The design of federations of peers is intended to resolve several of the problems of
prior p2p protocols. Rather than a separate swarm for every dataset per bittorrent,
or a single global swarm per IPFS, this system would be composed of peers that
can voluntarily associate and share metadata structure at multiple scales. Bittorrent
requires trackers to aggregate and structure metadata, but they become single points
of failure and often function as means of gatekeeping by the beloved petty tyrants
who host them. IPFS has turned to filecoin to incentivize donating storage space
among quasi-anonymous peers, a common design pattern among the radical zero-
trust design of many cryptocurrencies and cryptocurrency-like systems.

Voluntary federations are instead explicitly social systems that can describe and or-
ganize their own needs: peers in a federation can organize tracker or serverlike re-
hosting of their data for performance, discoverability, guaranteed longevity. A fed-
eration can institute a cooperative storage model akin to private bittorrent trackers
that requires a certain amount of rehosted data per data shared. A small handful of
researchers can form a small federation to share data while collaborating on a project
in the same way that a massive international consortioum could. Without enumer-
ating their many forms, federations can be a way to realize the evolvable community
structure needed for sustained archives. As may become clearer as we discuss systems
for communication, in the context of science they might be a way of reconceptual-
izing scientific societies as something that supports the practice of science beyond
their current role as ostensibly nonprofit journal publishers and event hosts.

So far we have described a system for sharing data with a p2p system integrated with
linked data. We have given a few brief examples of how linked data can be used for
standardized and vernacular metadata, integrating with heterogeneous local storage
systems, and to perform actions like creating and joining federations of peers. As
described, though, the system would still be decidedly unapproachable for most sci-
entists and doesn’t offer the kind of strong incentives that would create a broad base
of use. We clearly need one or several interfaces to make the creation and use meta-
data easy. We will return to those in Shared Knowledge and also describe a set of
communication and governance systems sorely needed in science. To get there, we
will first turn to a means of integrating our shared data system with analytical and
experimental tools to make each combinatorically more useful than if considered
alone.

10.3 Shared Tools

Straddling our system for sharing data are the tools to gather and analyze it — com-
bining tools to address the general need for storage with computational resources.
Considering them together presents us with new opportunities only possible with
cross-domain interoperability. In particular, we can ask how a more broadly in-
tegrated system makes each of the isolated components more powerful, enables a

https://en.wikipedia.org/wiki/Content-addressable_storage
https://www.datalad.org/
https://dandiarchive.org
https://mastodon.social/@humanetech/107155144840782386
https://web.archive.org/web/20211024082055/https://socialhub.activitypub.rocks/t/which-links-between-activitypub-and-solid-project/529
https://web.archive.org/web/20211024080845/https://socialhub.activitypub.rocks/t/how-solid-and-activitypub-complement-each-other-best/727
https://web.archive.org/web/20211024081238/https://forum.solidproject.org/t/discussion-solid-vs-activitypub/2685
https://filecoin.io/
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kind of deep provenance from experiment to results, and further builds us towards
reimagine the form of the community and communication tools for science. Where
the previous section focused on integrating linked metadata with data, here our fo-
cus is how to make linked data do things by integrating it with code.

This section will be relatively short compared to shared data. We have already in-
troduced, motivated, and exemplified many of the design practices of the broader
infrastructural system. There is much less to argue against or “undo” in the spaces
of analytical and experimental tools because so much more work has been done, and
so much more power has been accrued in the domain of data systems. Distributed
computing does have a dense history, with huge numbers of people working on the
problem, but its dominant form is much closer to the system articulated below than
centralized servers are to federated semantic p2p systems. I also have written exten-
sively about experimental frameworks before [414] , and develop one of them so I
will be brief at risk of repeating myself or appearing self-serving.

Integrated scientific workflows have been written about many times before, typically
in the context of the “open science” movement. One of the founders of the Center
for Open Science, Jeffrey Spies, described a similar ethic of toolbuilding as I have in
a 2017 presentation:

Open Workflow: 1. Meet users where they are 2. Respect current incentives 3.
Respect current workflow

• We could… demonstrate that it makes research more efficient, of higher qual-
ity, and more accessible.

• Better, we could… demonstrate that researchers will get published more often.

• Even better, we could… make it easy.

• Best, we could… make it automatic [415]

Similar to the impossibility of a single unified data format, it is unlikely that we will
develop one tool to rule them all. We will take the same tactic of thinking about
frameworks to integrate tools and make them easier to build, rather than building
any tool in particular.

10.3.1 Analytical Frameworks

The first natural companion of shared data infrastructure is a shared analytical frame-
work. A major driver for the need for everyone to write their own analysis code
largely from scratch is that it needs to account for the idiosyncratic structure of ev-
eryone’s data. Most scientists are (blessedly) not trained programmers, so code for
loading and loading data is often intertwined with the code used to analyze and plot
it. As a result it is often difficult to repurpose code for other contexts, so the same
analysis function is rewritten in each lab’s local analysis repository. Since sharing
raw data and code is still a (difficult) novelty, on a broad scale this makes results in
scientific literature as reliable as we imagine all the private or semi-private analysis
code to be.

Analytical tools (anecdotally) make up the bulk of open source scientific software,
and range from foundational and general-purpose tools like numpy [416] and scipy

https://docs.auto-pi-lot.com/en/latest/
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[417] , through tools that implement a class of analysis like DeepLabCut [238] and
scikit-learn [418] , to tools for a specific technique like MoSeq [419] and Deep-
Squeak [420] . The pattern of their use is then to build them into a custom analysis
system that can then in turn range in sophistication from a handful of flash-drive-
versioned scripts to automated pipelines.

Having tools like these of course puts researchers miles ahead of where they would
be without them, and the developers of the mentioned tools have put in a tremen-
dous amount of work to build sensible interfaces and make them easier to use. No
matter how much good work might be done, inevitable differences between APIs
is a relatively sizable technical challenge for researchers — a problem compounded
by the incentives for fragmentation described previously. For toolbuilders, many
parts of any given tool from architecture to interface have to be redesigned each
time with varying degrees of success. For science at large, with few exceptions of
well-annotated and packaged code, most results are only replicable with great effort.

Discontinuity between the behavior and interface of different pieces of software
is, of course, the overwhelming norm. Negotiating boundaries between (and even
within) software and information structures is an elemental part of computing. The
only time it becomes a conceivable problem to “solve” interoperability is when the
problem domain coalesces to the point where it is possible to articulate its abstract
structure as a protocol, and the incentives are great enough to adopt it. That’s what
we’re trying to do here.

It’s unlikely that we will solve the problem of data analysis being complicated, time
consuming, and error prone by teaching every scientist to be a good programmer,
but we can build experimental frameworks that make analysis tools easier to build
and use.

Specifically, a shared analytical framework should be

• Modular - Rather than implementing an entire analysis pipeline as a monolith,
the system should be broken into minimal, composable modules. The threshold
of what constitutes “minimal” is of course to some degree a matter of taste, but
the framework doesn’t need to make normative decisions like that. The system
should support modularity by providing a clear set of hooks that tools can pro-
vide: eg. a clear place for a given tool to accept some input, parameters, and so on.
Since data analysis can often be broken up into a series of relatively independent
stages, a straightforward (and common) system for modularity is to build hooks
to make a directed acyclic graph (DAG) of data transformation operations. This
structure naturally lends itself to many common problems: caching intermedi-
ate results, splitting and joining multiple inputs and outputs, distributing com-
putation over many machines, among others. Modularity is also needed within
the different parts of the system itself – eg. running an analysis chain shouldn’t
require a GUI, but one should be available, etc.

• Pluggable - The framework needs to provide a clear way of incorporating ex-
ternal analysis packages, handling their dependencies, and exposing their param-
eters to the user. Development should ideally not be limited to a single body
of code with a single mode of governance, but should instead be relatively con-
servative about requirements for integrating code, and liberal with the types of
functionality that can be modified with a plugin. Supporting plugins means sup-
porting people developing tools for the framework, so it needs to make some part
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of the toolbuilding process easier or otherwise empower them relative to an inde-
pendent package. This includes building a visible and expressive system for sub-
mitting and indexing plugins so they can be discovered and credit can be given
to the developers. Reciprocal to supporting plugins is being interoperable with
existing and future systems, which the reader may have assumed was a given by
now.

• Deployable - For wide use, the framework needs to be easy to install and deploy
locally and on computing clusters. A primary obstacle is dependency manage-
ment, or making sure that the computer has everything needed to run the pro-
gram. Some care needs to be taken here, as there are multiple emphases in de-
ployability that can be in conflict. Deployable for who? A system that can be rel-
atively challenging to use for routine exploratory data analysis but can distribute
analysis across 10,000 GPUs has a very circumscribed set of people it is useful for.
This is a matter of balancing design constraints, but we should prioritize broad
access, minimal assumptions of technological access, and ease of use over being
able to perform the most computationally demanding analyses possible when in
conflict. Containerization is a common, and the most likely strategy here, but
the interface to containers may need a lot of care to make accessible compared to
opening a fresh .py file.

• Reproducible - The framework should separate the parameterizationof a pipeline,
the specific options set by the user, and its implementation, the code that consti-
tutes it. The parameterization of a pipeline or analysis DAG should be portable
such that it, for example, can be published in the supplementary materials of a
paper and reproduced exactly by anyone using the system. The isolation of pa-
rameters from implementation is complementary to the separation of metadata
from data and if implemented with semantic triplets would facilitate a contin-
uous interface from our data to analysis system. This will be explored further
below and in shared knowledge

Thankfully a number of existing projects that are very similar to this description are
actively being built. One example is DataJoint [421] , which recently expanded its
facility for modularity with its recent Elements project [422] . Datajoint is a system
for creating analysis pipelines built from a graph of processing stages (among other
features). It is designed around a refinement on traditional relational data models,
which is reflected throughout the system as most operations being expressed in its
particular schema, data manipulation, and query languages. This is useful for opera-
tions that are expressed in the system, but makes it harder to integrate external tools
with their dependencies — at the moment it appears that spike sorting (with Kilo-
sort [423] ) has to happen outside of the extracellular electrophysiology elements
pipeline.

Kilosort is an excellent and incredibly useful tool, but its idiomatic architecture de-
signed for standalone use is illustrative of the challenge of making a general-purpose
analytic framework that can integrate a broad array of existing tools. It is built in
MATLAB, which requires a paid license, making arbitrary deployment difficult,
and MATLAB’s flat path system requires careful and usual manual orchestration
of potentially conflicting names in different packages. Its parameterization and use
are combined in a “main” script in the repository root that creates a MATLAB struct
and runs a series of functions — requiring some means for a wrapping framework to
translate between input parameters and the representation expected by the tool. Its

https://datajoint.io/
https://github.com/datajoint/datajoint-elements
https://docs.datajoint.org/python/v0.13/intro/01-Data-Pipelines.html#what-is-datajoint
https://docs.datajoint.org/python/v0.13/intro/01-Data-Pipelines.html#what-is-datajoint
https://github.com/datajoint/element-array-ephys/blob/1fdbcf12d1a518e686b6b79e9fbe77b736cb606a/Background.md
https://github.com/MouseLand/Kilosort
https://github.com/MouseLand/Kilosort
https://github.com/MouseLand/Kilosort/blob/db3a3353d9a374ea2f71674bbe443be21986c82c/main_kilosort3.m
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preprocessing script combines I/O, preprocessing, and plotting, and requires data
to be loaded from disk rather than passed as arguments to preserve memory — mak-
ing chaining in a pipeline difficult.

This is not a criticism of Datajoint or Kilosort, which were both designed for differ-
ent uses and with different philosophies (that are of course, also valid). I mean this
as a brief illustration of the design challenges and tradeoffs of these systems.

We can start getting a better picture for the way a decentralized analysis framework
might work by considering the separation between the metadata and code modules,
hinting at a protocol as in the federated systems sketch above. In the time since the
heydey of the semantic web there has been a revolution in containerization and de-
pendency management that makes it possible to imagine extending the notion of
linked data to being able to not only indicate binary data but also executable code.
Software dependencies form a graph structure, with one top level package specify-
ing a version range from a 1st-order dependent, which in turn has its own set of
2nd-order packages and versions, and so on. Most contemporary dependency man-
agers (like Python’s poetry, Javascript’s yarn, Rust’s cargo, Ruby’s Bundler, etc.)
compute an explicit dependency graph from each package’s version ranges to create
a ‘lockfile’ containing the exact versions of each package, and usually the repositories
where they’re located and the content hashes to verify them. More general purpose
package managers like spack [424] , or nix [425] can also specify system-level soft-
ware outside of an individual programming language, and containerization tools
like docker can create environments that include entire operating systems.

Since we’re considering modular analysis elements, each module would need some
elemental properties like the parameters that define it, its inputs, outputs, as well
as some additional metadata about its implementation (eg. this one takes numpy
arrays and this one takes matlab structs). The precise implementation of a modular
protocol also depends on the graph structure of the analysis pipelining system. We
invoked DAGs before, but analysis graph structure of course has its own body of re-
searchers refining them into eg. Petri nets which are graphs whose nodes necessarily
alternate between “places” (eg. intermediate data) and “transitions” (eg. an analysis
operation), and their related workflow markup languages (eg. WDL or [426] ). In
that scheme, a framework could provide tools for converting data between types,
caching intermediate data, etc. between analysis steps, as an example of how differ-
ent graph structures might influence its implementation.

The graph structure of our linked data system could flexibly extend to be continuous
with these dependency pipeline graphs. With some means for a client to resolve
the dependencies of a given analysis node, it would be possible to reconstruct the
environment needed to run it. By example, how might a system like this work?

Say we use @analysis as the namespace for our specifying each analysis node’s prop-
erties, and someone has provided bindings to objects in numpy (we’ll give an exam-
ple of how these bindings might work below, but for now assume they work analo-
gously to the module structure of numpy, ie. @numpy:ndarray == numpy.ndarray).
We can assume they are provided by the package maintainers, but that’s not neces-
sary: this is my node and it takes what I want it to!

In pseudocode, I could define some analysis node for, say, converting an RGB image
to grayscale under my namespace as @jonny:bin-spikes like this:

<#bin-spikes>

https://github.com/MouseLand/Kilosort/blob/a1fccd9abf13ce5dc3340fae8050f9b1d0f8ab7a/preProcess/datashift.m#L74-L77
https://github.com/MouseLand/Kilosort/blob/a1fccd9abf13ce5dc3340fae8050f9b1d0f8ab7a/preProcess/datashift.m#L57-L68
https://github.com/MouseLand/Kilosort/blob/a1fccd9abf13ce5dc3340fae8050f9b1d0f8ab7a/preProcess/preprocessDataSub.m#L82-L84
https://python-poetry.org/
https://yarnpkg.com/
https://doc.rust-lang.org/cargo/
https://bundler.io/
https://spack.readthedocs.io/en/latest/
https://nixos.org/
https://www.docker.com/
https://en.wikipedia.org/wiki/Petri_net
https://openwdl.org/
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a @analysis:node
Version ">=1.0.0"

hasDescription
"Convert an RGB Image to a grayscale image"

inputType
@numpy:ndarray

# ... some spec of shape, dtype ...

outputType
@numpy:ndarray

# ... some spec of shape, dtype ...

params
bin_width int

default 10

I have abbreviated the specification of shape and datatype to not overcomplicate the
pseudocode example, but say we successfully specify a 3 dimensional (width x height
x channels) array with 3 channels as input, and a a 2 dimensional (width x height)
array as output. An optional bin_width parameter with default “10” can also be
provided.

The code doesn’t run on nothing! We need to specify our node’s dependencies.
Say in this case we need to specify an operating system image ubuntu, a version of
python, a system-level package opencv, and a few python packages on pip. We are
pinning specific versions with semantic versioning, but the syntax isn’t terribly im-
portant. Then we just need to specify where the code for the node itself comes from:

dependsOn
@ubuntu:"^20.*":x64
@python:"3.8"
@apt:opencv:"^4.*.*"
@pip:opencv-python:"^4.*.*"

.extraSource "https://pywheels.org/"
@pip:numpy:"^14.*.*"

providedBy
@git:repository

.url "https://mygitserver.com/binspikes/fast-binspikes.git"

.hash "fj9wbkl"
@python:class "/main-module/binspikes.py:Bin_Spikes"

method "run"

Here we can see the practical advantage of the “inverted” link-based system rather
than an object-oriented-like approach. @ubuntu refers to a specific software image
that would have a specific providedBy value, but both @apt and @pip can have dif-
ferent repositories that they pull packages from, and for a given version and repos-
itory there will be multiple possible software binaries for different CPU architec-
tures, python versions, etc. Rather than needing to specify a generalized specifica-
tion format, each of these different types of links could specify their own means of

https://semver.org/
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resolving dependencies: a @pip dependency requires some @python version to be
specified. Both require some operating system and architecture. If we hadn’t pro-
vided the .extraSource of pywheels (for ARM architectures), someone who had
defined some link between a given architecture and @pip could be proposed as a way
of finding the package.

Our @analysis.node protocol gives us several slots to connect different tools to-
gether, each in turn presumably provides some minimal functionality expected by
that slot: eg. inputType can expect @numpy:ndarray to specify its own dependen-
cies, the programming language it is written in, shape, data type, and so on. Co-
ercing data between chained nodes then becomes a matter of mapping between the
@numpy and, say a @nwb namespace of another format. In the same way that there
can be multiple, potentially overlapping between data schemas, it would then be
possible for people to implement mappings between intermediate data formats as-
needed. This gives us an opportunity to build pipelines that use tools from multiple
languages, a problem typically solved by manually saving, loading, and cleaning in-
termediate data.

This node also becomes available to extend, say someone wanted to add an addi-
tional input format to my node:

<@friend#bin-spikes>
extends @jonny:bin-spikes

inputType
@pandas:DataFrame

providedBy
...

They don’t have to interact with my potentially messy codebase at all, but it is auto-
matically linked to my work so I am credited. One could imagine a particular analy-
sis framework implementation that would then search through extensions of a par-
ticular node for a version that supports the input/output combinations appropriate
for their analysis pipeline, so the work is cumulative. This functions as a dramatic
decrease in the size of a unit of work that can be shared.

This also gives us healthy abstraction over implementation. Since the functionality
is provided by different, mutable namespaces, we’re not locked into any particular
piece of software — even our @analysis namespace that gives the inputType etc.
slots could be forked. We could implement the dependency resolution system as,
eg. a docker container, but it also could be just a check on the local environment if
someone is just looking to run a small analysis on their laptop with those packages
already installed.

The relative complexity required to define an analysis node, as well as the multiple
instances of automatically computed metadata like dependency graphs hints that we
should be thinking about tools that avoid needing to write it manually. We could
use an Example_Framework that provides a set of classes and methods to implement
the different parts of the node (a la luigi). Our Bin class inherits from Node, and
we implement the logic of the function by overriding its run method and specify an
output file to store intermediate data (if requested by the pipeline) with an output
method. Our class is within a typical python package that specifies its dependencies,

https://luigi.readthedocs.io/en/stable/tasks.html
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which the framework can detect. We also specify a bin_width as a Parameter for our
node, as an example of how a lightweight protocol could be bidirectionally speci-
fied as an interface to the linked data format: we could receive a parameterization
from our pseudocode metadata specification, or we could write a framework with a
Bin.export_schema() that constructs the pseudocode metadata specification from
code.

from Example_Framework import Node, Param, Target

class Bin(Node):
bin_width = Param(dtype=int, default=10)

def output(self) -> Target:
return Target('temporary_data.pck')

def run(self, input:'numpy.ndarray') -> 'numpy.ndarray':
# do some stuff
return output

Now that we have a handful of processing nodes, we could then describe some
@workflow, taking some @nwb:NWBFile as input, as inferred by the inputType of the
bin-spikes node, and then returning some output as a :my-analysis:processed
child beneath the input. We’ll only make a linear pipeline with two stages, but
there’s no reason more complex branching and merging couldn’t be described as
well.

<#my-analysis>
a @analysis:workflow

inputType
@jonny:bin-spikes:inputType

outputName
input:my-analysis:processed

step Step1 @jonny:bin-spikes
step Step2 @someone-else:another-step

input Step1:output

Since the parameters are linked from the analysis nodes, we can specify them here (or
in the workflow). Assuming literally zero abstraction and using the tried-and-true
“hardcoded dataset list” pattern, something like:

<#my-project>
a @analysis:project

hasDescription
"I gathered some data, and it is great!"

researchTopic
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@neuro:systems:auditory:speech-processing
@linguistics:phonetics:perception:auditory-only

inPaper
@doi:10.1121:1.5091776

workflow Analysis1 @jonny:my-analysis
globalParams

.Step1:params:bin_width 10

datasets
@jonny.mydata1:v0.1.0:raw
@jonny.mydata2:^0.2.*:raw
@jonny.mydata3:>=0.1.1:raw

And there we are! The missing parameters like outputName from our workflow can
be filled in from the defaults. Our project is an abstract representation of the analysis
to be performed and where its output will be found - in this case as :processed be-
neath each dataset link. From this very general pseudocode example it’s possible to
imagine executing the code locally or on some remote server, pulling the data from
our p2p client, installing the environment, and duplicating the resulting data to the
clients configured to mirror our namespace. This system would work similar to the
combination of configuration and lockfiles from package managers: we would give
some abstract specification for a project’s analysis, but then running it would create
a new set of links with the exact dependency graph, links to intermediate products,
and so on. We get some inkling of where we’re going later by also being able to spec-
ify the paper this data is associated with, as well as some broad categories of research
topics so that our data as well as the results of the analysis can be found.

From here we could imagine how existing tools might be integrated without needing
to be dramatically rewritten. In addition to wrapping their parameters, functions,
and classes with the above Node class, we could imagine our analysis linking frame-
work providing some function to let us indicate code within a package and prompt
us for any missing pieces like dependency specification from, for example, old style
python packages that don’t require it. For packages that don’t have an explicit declar-
ative parameterization, but rely on programmatically created configuration files, we
could imagine a tool ingestion function being able to extract default fields and then
refer to them with a fromConfig @yaml link. A single tool need not be confined
to a single analysis node: for example a tool that requires some kind of user inter-
action could specify that with an @analysis:interactive node type that feeds its
output into a subsequent analysis node. There are infinitely more variations to be
accounted for — but adapting to them is the task of an extensible linking system.

As soon as we extend our relatively static protocol to the realm of arbitrary code
we immediately face the question of security. Executing arbitrary code from many
sources is inherently dangerous and worthy of careful thought, but any integrative
framework becomes a common point where security practices could be designed
into the system as opposed to the relative absence of security practices of any kind in
most usages of scientific software. There is no reason to believe that this system is
intrinsically more dangerous than running uninspected packages from PyPI, which,
for example, have been known to steal AWS keys and environment variables [427] 36. 36 They took advantage of being able to run

arbitrary code in legacy setup.py scripts to run
a separate shell command, an illustration of the
urgency with which we need to deprecate that
horrible system.

Having analysis code and its dependency graph specified publicly presents opportu-

https://blog.sonatype.com/python-packages-upload-your-aws-keys-env-vars-secrets-to-web
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nities for being able to check for identified vulnerabilities at the time of execution
— a role currently filled by platform tools like GitHub’s dependabot or npm’s au-
dit. Running code by default in containers or virtual environments could be a way
towards making code secure by default.

So that’s useful, but comparable to some existing pipelining technologies. The im-
portant part is in the way this hypothetical analysis framework and markup interact
with our data system — it’s worth unpacking a few points of interaction.

A dataset linked to an analysis pipeline and result effectively constitutes a “unit of
analysis.” If I make my data publicly available, I would be able to see all the results
and pipelines that have been linked to it. Within a single pipeline, comparing the re-
sults across a grid of possible parameterizations gives us a “multiverse analysis [428]
” for estimating the effects of each parameterization for free. Conversely, “rules of
thumb” for parameter selection can be replaced by an evaluation of parameters and
results across prior applications of the pipeline. Since some parameters like model
weights in neural networks are not trivial to reproduce, and their use is linked to the
metadata of the dataset they are applied to, all analyses contribute to a collection
of models like the DeepLabCut model zoo decreasing the need for fine tuning on
individual datasets and facilitating metalearning across datasets.

Across multiple pipelines, a dataset need no longer be dead on publication, but can
instead its meaning and interpretation can continuously evolve along with the state
of our tools and statistical practices. Since pipelines themselves are subject to the
same kind of metadata descriptions as datasets are, it becomes to find multiple anal-
ysis nodes that implement the same operation, or to find multiple pipelines that per-
form similar operations despite using different sets of nodes. Families of pipelines
that are applied to semantically related datasets would then become the substrate
for a field’s state of the art, currently buried within disorganized private code repos-
itories and barely-descriptive methods sections. Instead of a 1:1 relationship where
one dataset is interpreted once, we could have a many-to-many relationship where a
cumulative body of data is subject to an evolving negotiation of interpretation over
time — ostensibly how science is “supposed to” work.

This system also allows the work of scientific software developers to be credited
according to use, instead of according to the incredibly leaky process of individ-
ual authors remembering to search for all the citations for all the packages they
may have used in their analysis. Properly crediting the work of software develop-
ers is important not only for equity, but also for the reliability of scientific results
as a whole. A common admonishment in cryptography is to “never roll your own
crypto,” but that’s how most homebrew analysis code works, and the broader state
of open source scientific code is not much better without incentives for mainte-
nance. Bugs in analysis code that produce inaccurate results are inevitable and ram-
pant [186, 183, 184, 185] , but impossible to diagnose when every paper writes its
own pipeline. A common analysis framework would be a single point of inspec-
tion for bugs and means of providing credit to people who fix them. When a bug
is found, rather than irreparably damaging collective confidence in a field, it would
then be trivial to re-run all the analyses that were impacted and evaluate how their
results were changed.

Finally, much like how we are building towards the social systems to support feder-
ations for sharing data, integrating analysis pipelines into a distributed network of
servers is a means of realizing a generalized Folding@Home-style distributed com-

https://github.com/dependabot
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puting grid [429, 430] . Existing projects like F@H and the Pacific Research Plat-
form [431] show the promise of these distributed computing systems for solving
previously-intractable problems, but they require large amounts of coordination
and are typically centrally administered towards a small number of specific projects
with specific programming requirements. With some additional community sys-
tems for governance, resource management, and access, they become tantalizingly
in-reach from the system we are describing here. We will return to that possibility
after discussing experimental tools.

10.3.2 Experimental Frameworks

Across from the tools to analyze data are those to collect it, and tools to integrate
the diversity of experimental practice are a different challenge altogether: everyone
needs completely different things! Imagine the different stages of research as a cone of
complexity: at the apex we can imagine the relatively few statistical outcomes from a
family of tests and models. For every test statistic we can imagine a thousand analysis
scripts, for every analysis script we might expect a thousand data formats, and so the
complexity of the thousand experimental tools used to collect each type of data feels
… different.

Beyond a narrow focus of the software for performing experiments itself, the sur-
rounding contextual knowledge work largely lacks a means of communication and
organization. Methods sections have been increasingly marginalized, abbreviated,
pushed to the end, and relegated to the supplement. The large body of work that
is not immediately germane to experimental results, like animal care, engineering
instruments, lab management, etc. have effectively no formal means of communi-
cation — and so little formal means of credit assignment.

Extending our ecosystem to include experimental tools has a few immediate benefits:
bridging the gap between collection and sharing of data would resolve the need for
format conversion as a prerequisite for inclusion in the linked system, allowing the
expression of data to be a fluid part of the experiment itself. It would also serve
as a means of building a body of cumulative contextual knowledge in a creditable
system.

I have previously written about the design of a generalizable, distributed experimen-
tal framework [414] , so to avoid repeating myself, and since many of the ideas from
the section on analysis tools apply here as well, I will be relatively brief.

We don’t have the luxury of a natural formalism like a DAG to structure our ex-
perimental tools. Some design constraints on experimental frameworks might help
explain why:

• They need to support a wide variety of instrumentation, from off -the-shelf
parts, to proprietary instruments as are common in eg. microscopy, to cus-
tom, idiosyncratic designs that might make up the existing infrastructure in
a lab. Writing and testing embedded code that controls external hardware is a
wholly different kind of difficulty than writing analysis tools.

• To be supportive, rather than constraining, they need to be able to flexibly per-
form many kinds of experiments in a way that is familiar to patterns of ex-
isting practice. That effectively means being able to coordinate heterogeneous
instruments in some “task” with a flexible syntax.
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• They need to be inexpensive to implement, in terms of both money and labor,
so it can’t require buying a whole new set of hardware or dramatically restructur-
ing existing research practices.

• They need to be accessible and extensible, with many different points of con-
trol with different expectations of expertise and commitment to the framework.
It needs to be useful for someone who doesn’t want to learn it to its depths, but
also have a comprehensible codebase at multiple scales so that reasearchers can
easily extend it when needed.

• They need to be designed to support reproducibility and provenance, which
is a significant challenge given the heterogeneity inherent in the system. On one
hand, being able to produce data that is clean at the time of acquisition simpli-
fies automated provenance, but enabling experimental replication requires mul-
tiple layers of abstraction to keep the idiosyncracies of an experiment separable
from its implementation: it shouldn’t require building exactly the same appara-
tus with exactly the same parts connected in exactly the same way to replicate an
experiment.

• Ideally, they need to support cumulative labor and knowledge organization,
so an additional concern with designing abstractions between system compo-
nents is allowing work to be made portable and combinable with others. The
barriers to contribution should be extremely minimal, not requiring someone
to be a professional programmer to make a pull request to a central library, and
contributions should come in many modes — code is not the only form of know-
ing and it’s far from the only thing needed to perform an experiment.

Here, as in the domains of data and analysis, the temptation to universalize is strong,
and the parts of the problem that are emphasized influence the tools that are pro-
duced. A common design tactic for experimental tools is to design them as state ma-
chines, a system of states and transitions not unlike the analysis DAGs above. One
such nascent project is BEADL [432] from a Neurodata Without Borders work-
ing group. BEADL is an XML-based markup for standardizing a behavioral task
as an abstraction of finite state machines called statecharts. Experiments are fully
abstract from their hardware implementation, and can be formally validated in sim-
ulations. The working group also describes creating a standardized ontology and
metadata schema for declaring all the many variable parameters for experiments,
like reward sizes, stimuli, and responses [433] . This group, largely composed of
members from the Neurodata Without Borders team, understandably emphasize
systematic description and uniform metadata as a primary design principle.

Personally, I like statecharts. The problem is that it’s not necessarily natural to ex-
press things as statecharts as you would want to, or in the way that your existing,
long-developed local experimental code does. There are only a few syntactical fea-
tures needed to understand the following statechart: blocks are states, they can be
inside each other. Arrows move between blocks depending on some condition. En-
tering and exiting blocks can make things happen. Short little arrows from filled
spots are where you start in a block, and when you get to the end of the chart you
go back to the first one. See the following example of a statechart for controlling a
light, described in the introductory documentation and summarized in the figure
caption:

They have an extensive set of documents that defend the consistency and readability
of statecharts on their homepage, and my point here is not to disagree with them.

https://archive.org/details/beadl-xml-documentation-v-0.1/mode/2up
https://archive.org/details/nwb-behavioral-task-wg
https://archive.org/details/nwb-behavioral-task-wg
https://statecharts.github.io/
https://statecharts.dev/on-off-statechart.html
https://statecharts.dev/
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Figure 10.3: “When you flick a lightswitch, wait
0.5 seconds before turning the light on, then once
it’s on wait 0.5 seconds before being able to turn it
back off again. When you flick it off, wait 2 seconds
before you can turn it on again.

My point is instead that tools that aspire to the status of generalized infrastructure
can’t ask people to dramatically change the way they think about and do science.
There are many possible realizations of any given experiment, and each is more or
less natural to every person.

The problem here is really one of emphasis, BEADL seeks to solve problems with
inconsistencies in terminology by standardizing them, and in order to do that seeks
to standardize the syntax for specifying experiments.

This means of standardization has many attractive qualities and is being led by very
capable researchers, but I think the project is illustrative of how the differing struc-
tures of problems constrain the possible space of tooling. Analysis tasks are often
asynchronous, where the precise timing of each node’s completion is less impor-
tant than the path dependencies between different nodes. Analysis tasks often have
a clearly defined set of start, end, and intermediate cache points, rather than branch-
ing or cyclical decision paths that change over multiple timescales. Statecharts are a
hierarchical abstraction of finite state machines, the primary advantage of which is
that they are better able to incorporate continuous and history-dependent behavior,
which cause state explosion in traditional finite-state machines.

The difficulty of a controlled ontology for experimental frameworks is perhaps bet-
ter illustrated by considering a full experiment. In Autopilot, a full experiment can
be parameterized by the .json files that define the task itself and the system-specific
configuration of the hardware. An example task from our lab consists of 7 behav-
ioral shaping stages of increasing difficulty that introduce the animal to different
features of a fairly typical auditory categorization task. Each stage includes the pa-
rameters for at most 12 different stimuli per stage, probabilities for presenting lasers,
bias correction, reinforcement, criteria for advancing to the next stage, etc. So just
for one relatively straightforward experiment, in one lab, in one subdiscipline, there
are 268 parameters – excluding all the default parameters encoded in the software.

How might we approach this problem differently, to accommodate diversity of
thought styles and to be complementary to our data and analysis systems? The pri-
mary things we need from our experimental frameworks are a) to be able to link a

https://gist.github.com/sneakers-the-rat/eebe675326a157df49f66f62c4e33a6e
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particular realization of an experiment with the metadata that describes it, and b) to
be able to produce similarly metadata-rich data. Rather than linked data indicating
code as in our analysis frameworks, we might invert our strategy and think about
code that draws from linked data.

As an example, Autopilot [414] approaches the problem by avoiding standardizing
experiments themselves, instead providing smaller building blocks of experimental
tools like hardware drivers, data transformations, etc. and emphasizing understand-
ing their use in context. This approach sacrifices some of the qualities of a standard-
ized system like being a logically complete or guaranteeing a standardized vocabu-
lary in order to better support integrating with existing work patterns and making
work cumulative. Because we can’t possibly predict the needs and limitations of a
totalizing system, we split the problem along a different set of concerns, those of the
elements of experimental practice, and give facility for describing how they are used
together.

For concrete example, we might imagine the lightswitch in an autopilot-like frame-
work like this:

from autopilot.hardware.gpio import Digital_Out
from time import sleep
from threading import Lock

class Lightswitch(Digital_Out):
def __init__(self,

off_debounce: float = 2,
on_delay: float = 0.5,
on_debounce: float = 0.5):
"""
Args:

off_debounce (float):
Time (s) before light can be turned back on

on_delay (float):
Time (s) before light is turned on

on_debounce (float):
Time (s) after turning on that light can't be turned off

"""
self.off_debounce = off_debounce
self.on_delay = on_delay
self.on_debounce = on_debounce

self.on = False
self.lock = Lock()

def switch(self):
# use a lock to make sure if
# called while waiting, we ignore it
if not self.lock.acquire():

return

# if already on, switch off
if self.on:

https://docs.auto-pi-lot.com
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self.on = False
sleep(self.off_debounce)

# otherwise switch on
else:

sleep(self.on_delay)
self.on = True
sleep(self.on_debounce)

self.lock.release()

The class Lightswitch inherits from the Digital_Out class, which in turn inherits
from GPIO and eventually Hardware. This hierarchy of inheritance carries with it a
progressive refinement of meaning about what this class does. The termsoff_debounce,
on_delay, and on_debounce are certainly not part of a controlled ontology, but the
context of their use bounds their meaning. Rather than being bound by, for exam-
ple, the abstract Latency term from interlex, we have defined terms that we need to
make a hardware object do what we need it to. These terms don’t have too much
meaning on their own — there isn’t even much in this class to uniquely identify it as
a “lightswitch” beyond its name, it is just a timed digital output. What makes them
meaningful is how they are used.

The way Autopilot handles various parameters are part of set of layers of abstrac-
tion that separate idiosyncratic logic from the generic form of a particular Task
or Hardware class. The general structure of a two-alternative forced choice task is
shared across a number of experiments, but they may have different stimuli, differ-
ent hardware, and so on. Autopilot Tasks use abstract references to classes of hard-
ware components that are required to run them, but separates their implementation
as a system-specific configuration so that it’s not necessary to have exactly the same
components plugged into exactly the same GPIO pins, etc. Task parameters like
stimuli, reward timings, etc. are similarly split into a separate task parameterization
that both allow Tasks to be generic and make provenance and experimental history
easier to track. Task classes can be subclasses to add or modify logic while being
able to reuse much of the structure and maintain the link between the root task and
its derivatives — for example one task we use that starts a continuous background
sound but otherwise is the same as the root Nafc class. The result of these points of
abstraction is to allow exact experimental replication on inexactly replicated experi-
mental apparatuses.

This separation of the different components of an experiment is a balance between
reusable code and clear metadata: we might allow freedom of terminology for each
individual class, but by designing the system to encourage reuse of flexible classes
we reduce the number of times unique terms need to be redefined. For example, we
can imagine a trivial use of our lightswitch inside a task measuring an experimental
subject’s estimation of time intervals: we toggle the switch once some analog sensor
reaches a certain threshold, and then the subject tries to press a button at the same
time as the light turns on after a fixed delay. While this is very similar to how Au-
topilot currently works, note that we are using pseudocode to indicate how it might
extend the system we’re describing.

from autopilot import Task
from autopilot.data.modeling import Field

https://scicrunch.org/scicrunch/interlex/view/ilx_0106040#annotations
https://github.com/auto-pi-lot/autopilot-plugin-wehrlab/blob/9cfffcf5fe1886d25658d4f1f0c0ffe41c18e2cc/gap/nafc_gap.py#L13-L49
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from datetime import datetime, timedelta

class Controlled_Switch(Task):
"""
A [[Discipline::Psychophysics]] experiment
to measure [[Research Topic::Interval Estimation]].
"""

class Params(Task.Param_Spec):
on_delay: '@si:seconds' = Field(

description="Delay (s) before turning light on",
parameterizes="@jonny:hardware:Lightswitch")

threshold: float = Field(
description="Flick switch above this value",
is_a="@interlex:Threshold")

class TrialData(Task.TrialData_Spec):
switch_time: datetime = Field(

description="Time the switch was flicked")
target_time: datetime = Field(

description="Time the subject should respond")
response_time: datetime = Field(

description="Time the subject did respond")
error: timedelta = Field(

description="Difference between target and response",
is_a="@psychophys:ReactionTime")

HARDWARE = {
'sensor': 'Analog_In',
'button': 'Digital_In',
'lightswitch': '@jonny:hardware:Lightswitch'

}

def __init__(self,
on_delay:float,
threshold:float):

self.on_delay = on_delay
self.threshold = threshold

super(Controlled_Switch, self).__init__()
self.poll()

def poll(self):
while self.running:

if self.hardware['sensor'].value > self.threshold:
self.hardware['lightswitch'].switch()
switch_time = datetime.now()
target_time = switch_time + self.on_delay

# Wait for the subject to press the button
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response_time = self.hardware['button'].wait()

# Send the data for storage
self.node.send(key="DATA", value={

'switch_time': switch_time,
'target_time': target_time,
'response_time': response_time,
'error': target_time - response_time

})

In this example, we first define a data model (see section 3.2 - Data in [434] ) for
the Tasks Params, the data that the task produces as TrialData, and the HARDWARE
that the task uses. Our Params each have a type hint indicating what type of data
they are, as well as a Field that gives further detail about them. Specifically, we have
exposed the Lightswitch’s on_delay parameter, indicated that it will be in seconds
by referring to some namespace that defines SI units @si and that it parameterizes
the lightswitch object that we defined above. The TrialData is similarly annotated,
and by default Autopilot will use this specification to create an hdf5 table to store
the values. The HARDWARE dictionary makes abstract references the hardware objects
that will be made available in the task, each of which would have its configuration
— which GPIO pin they are plugged into, the polarity of the signal, etc. — using
some local system configuration. Finally, the single poll() method continuously
compares the value of the sensor to the threshold, switches the lightswitch when
the threshold is crossed, records the time the button was pressed, and sends it for
storage with its network node.

As before, we are using our experimental framework as an interface to our linked
data system. Currently, Autopilot uses a semantic wiki to organize technical knowl-
edge and to share plugins - https://wiki.auto-pi-lot.com. In this case, I would
write my task and hardware classes inside a git repository and then add them to Au-
topilot’s plugin registry, which uses a form to fill in semantic properties and allows
further annotation in free text and semantic markup.

We could instead imagine being able to document the task in its docstring, including
describing the relevant subdiscipline, research topic, and any other relevant meta-
data. Rather than manually entering it in the wiki, then, we might export the triplet
annotations directly from the class and make them available from my @jonnynames-
pace and mirroring that to the wiki. Since the plugin specifies its dependencies using
standard Python tools, it would then be possible for other researchers to use its task
and hardware objects by referring to them as above.

In our pseudocode, the (abbreviated) exported metadata for this task might look
like this:

<#tasks:Controlled_Switch>
a @autopilot:Task

hasDescription
"A Psychophysics experiment
to measure Interval Estimation."

Discipline "Psychophysics"

https://peps.python.org/pep-0483/
https://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki
https://docs.auto-pi-lot.com/en/latest/guide/plugins.html
https://wiki.auto-pi-lot.com
https://wiki.auto-pi-lot.com/index.php/Autopilot_Plugins
https://wiki.auto-pi-lot.com/index.php/Form:Autopilot_Plugin
https://peps.python.org/pep-0257/
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Research_Topic "Interval Estimation"

Params
on_delay @si:seconds

hasDescription "..."
parameterizes @jonny:hardware:Lightswitch

...

TrialData
switch_time @python:datetime
...

usesHardware
@autopilot:hardware:Analog_In

hasID "sensor"
@autopilot:hardware:Digital_In

hasID "button"
@jonny:hardware:Lightswitch

hasID "lightswitch"

and we might combine it with metadata that describes our particular use of it like
this, where we combine that task with a series of other levels that shape the behav-
ior, make it more challenging, or measure something else entirely:

<#projects:my-project>
a @autopilot:protocol
experimenter @jonny
...

level @jonny:tasks:Controlled_Switch
on_delay 2
threshold 0.5
graduation @autopilot:graduation:ntrials

n_trials 200

level @jonny:tasks:Another_Task
...

hardwareConfig
button @autopilot:hardware:Digital_In

gpioPin 17
polarity 1

sensor @autopilot:hardware:Analog_In
usesPart @apwiki:parts:<Part_Number>
...

On the other side, our output data can be automatically exported to NWB37. Our 37 Recall that we’re using NWB for the sake of
concreteness, but this argument applies to any
standardized data format.

experimental framework knows that data contained within a TrialData model is a
@nwb:behavior:BehavioralEvents object, and can combine it with the metadata
in our task docstring and system configuration. If we needed more specific data
export - say we wanted to record the timeseries of the analog sensor - we could use
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the same is_a parameter to declare it as a @nwb:TimeSeries and create an extension
to store the metadata about the sensor alongside it38. 38 Though this is a description of something we

could build towards, v0.5.0 (at the time of writing
released as alpha) of Autopilot has a data modeling
framework that should make this possible in future
versions.

So while our code is mildly annotated and uses a mixture of standard and nonstan-
dard terminology, we make use of the structure of the experimental framework to
generate rich provenance to understand our data and task in context. It’s worth
pausing to consider what this means for our infrastructural system as a whole

To start, we have a means of integrating our task with the knowledge that precedes
it in the hardware and system configuration that runs it. In addition to document-
ing plugins, among others, the Autopilot wiki also has schema for custom built and
off-the-shelf hardware like sensors and sound cards. These correspond to local hard-
ware configuration entries that link them to the hardware classes required to use
them39. That link can be used bidirectionally: metadata about the hardware used 39 Not yet, but this is planned development for

future versions.to perform an experiment can be used in the experiment and be included with the
produced data data, but the data from experiments can also be used to document
the hardware. That means that usage data like calibrations and part longevity can be
automatically collected and contributed to the wiki and then used to automatically
configure hardware in future uses. This makes using the experimental framework
more powerful, but also makes building a communal library of technical knowledge
a normal part of doing experiments. Though the wiki is a transitional medium to-
wards what we will discuss in the next section, since contributions are tracked and
versioned that allows a currently undervalued class of knowledge work to be cred-
itable.

This gives us a different model of designing and engineering experiments than we
typically follow. Rather than designing most of it from scratch or decoding cryptic
methods sections, researchers could start with a question and basic class of experi-
ment, browse through various implementations based on different sets of tools, see
which hardware they and analogous experiments use, which is then linked to the
code needed to run it. From some basic information researchers would then be
most of the way to performing an experiment: clone the task, download the nec-
essary system configuration information to set up the hardware, make incremental
modifications to make the experiment match what they had designed, all the while
contributing and being credited for their work.

Much of this is possible because of the way that Autopilot isolates different compo-
nents of an experiment: hardware is defined separately from tasks, both are separate
from their local configuration. In addition to thinking about how to design tools
for our infrastructural system, we can also think of the way it might augment ex-
isting tools. Another widely used and extremely capable tool, Bonsai [435, 436] ,
is based on XML documents that combine the pattern of nodes that constitute an
experiment with specific parameters like a crop bounding box. That makes sharing
and reusing tasks difficult without exactly matching the original hardware configu-
ration, but we could use our metadata system to generate code for Bonsai in addition
to consuming data from it. Given some schematic pattern of nodes that describes
the operation of the experiment, we could combine that with the same notion of sep-
arable parameterization and hardware configurations as we might use in Autopilot
to generate the XML for a bonsai workflow. As with analytical tools, our infrastruc-
tural system could be used to make a wide array of experimental tools interoperable
with an evolving set of vernacular metadata schema.

Together, our data, experimental, and analytical infrastructures would dramatically

https://docs.auto-pi-lot.com/en/latest/changelog/v0.5.0.html
https://wiki.auto-pi-lot.com/index.php/Autopilot_Behavior_Box
https://wiki.auto-pi-lot.com/index.php/Parts
https://wiki.auto-pi-lot.com/index.php/TT_Electronics_OPB901L55
https://wiki.auto-pi-lot.com/index.php/HiFiBerry_Amp2
https://github.com/bonsai-rx/bonsai-examples/blob/cbc2c1decc11e1dc1df920421ef88a16fd2e184c/RoiTrigger/RoiTrigger.bonsai
https://github.com/bonsai-rx/bonsai-examples/blob/cbc2c1decc11e1dc1df920421ef88a16fd2e184c/RoiTrigger/RoiTrigger.bonsai#L76-L85
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reshape what is possible in science. What we’ve described is a complete provenance
chain that can be traced from analyzed results back through to the code and hard-
ware used to perform the experiment. Trivially, this makes the elusive workflow
where experimental data is automatically scooped up and analyzed as soon as it is
collected that is typically a hard-won engineering battle within a single lab the nor-
mal mode of using the system. Developing tools that give researchers control over
the mode of exported data renders the act of cleaning data effectively obsolete. The
role of our experimental tool is to be able to make use of collected technical knowl-
edge, but also to lower the barriers to using the rest of the system by integrating it
with normal experimental practice.

The effects on collaboration and metascience are deeper though. Most scientific
communication describes collecting and analyzing a single dataset. Making sense of
many experiments is only possible qualitatively as a review or quantitatively as meta-
analysis. Even if we have a means of linking many datasets and analysis pipelines
as in the previous section, the subtle details in how a particular experiment is per-
formed matter: things as small as milliseconds of variation in valve timings through
larger differences in training sequences or task design powerfully influence the col-
lected data. This makes comparing data from even very similar experiments — to
say nothing of a class of results from a range of different experiments — a noisy and
labor-intensive statistical process, to the degree that it’s possible at all. This system
extends the horizon of meta-analysis to the experiment itself and turns experimental
heterogeneity into a strength rather than a weakness. Is some result a byproduct of
some unreported parameter in the experimental code? Is a result only visible when
comparing across these different conditions? Individual experiments only allow a
relatively limited set of interpretations and inferences to be drawn, but being able
to look across the variation in experimental design would allow phenomena to be
described in the full richness supported by available observations.

This would also effectively dissolve the “file drawer problem.” [437, 438] Though
malice is not uncommon in science, I think it’s reasonably fair to assume that most
researchers do not withhold data given a null result in order to “lie” about an effect,
but because there is no reward for a potentially laborious cleaning and publication
process. Collecting data that is clean and semantically annotated at the time of ac-
quisition resolves the problem. Even without the analysis or paper, being able to
index across experiments of a particular kind would make it possible to have a much
fairer look at a landscape distorded by the publication process and prevent us from
repeating the same experiments because no one has bothered to publish the null.
This would also open new avenues for collaboration as we will explore in the next
section.

To review:

We have described a system of three component modalities: data, analytical tools,
and experimental tools connected by a linked data layer. We started by describing
the need for a peer-to-peer data system that makes use of data standards as an
onramp to linked metadata. To interact with the system, we described an identity-
based linked data system that lets individual people declare linked data resources
and properties that link to content addressed resources in the p2p system, as well
as federate into multiple larger organizations. We described the requirements for
DAG-based analytical frameworks that allow people to declare individual nodes
for a processing chain linked to code, combine them into workflows, and apply them
to data. Finally, we described a design strategy for component-based experimental
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frameworks that lets people specify experimental metadata, tools, and output data.

This system as described is a two-layer system, with a few different domains linked by
a flexible metadata linking layer. The metadata system as described is not merely in-
ert metadata, but metadata linked to code that cando something — eg. specify access
permissions, translate between data formats, execute analysis workflows, parameter-
ize experiments, etc. Put another way, we have been attempting to describe a system
that embeds the act of sharing and curation in the practice of science. Rather than a
thankless post-hoc process, the system attempts to provide a means for aligning the
daily work of scientists so that it can be cumulative and collaborative. To do this,
we have tried to avoid rigid specifications of system structure, and instead described
a system that allows researchers to pluralistically define the structure themselves.

10.4 Shared Knowledge

The Web is more a social creation than a technical one. I designed it for a social
effect — to help people work together — and not as a technical toy. [...] We
clump into families, associations, and companies. We develop trust across the
miles and distrust around the corner. What we believe, endorse, agree with, and
depend on is representable and, increasingly, represented on the Web. We all have
to ensure that the society we build with the Web is of the sort we intend.

Tim Berners-Lee (1999) Weaving theWeb [394]

The remaining set of problems implied by the infrastructural system sketched so
far are the communication and organization systems that make up the interfaces to
maintain and use it. We can finally return to some of the breadcrumbs laid before:
the need for negotiating over distributed and conflicting data schema, for incentiviz-
ing and organizing collective labor, and for communicating information within and
without academia.

The communication systems that are needed double as knowledge organization sys-
tems. Knowledge organization has the rosy hue of something that might be un-
controversial and apolitical — surely everyone involved in scientific communication
wants knowledge to be organized, right? The reality of scientific practice might give
a hint at our naivete. Despite being, in some sense, itself an effort to organize knowl-
edge, scientific results effectively have no system of explicit organization. There is no
means of, say, “finding all the papers about a research question.”40 The problem is 40 Also see Eve Marder’s recent short and character-

istically refreshing piece which in part discusses the
problem of keeping up with scientific literature the
context of maintaining the joy of discovery [439] .

so fundamental it seems natural: the usual methods of using search engines, asking
around on Twitter, and chasing citation trees are flex tape slapped over the central
absence of a system for formally relating our work as a shared body of knowledge.

Information capitalism, in its terrifying splendor, here too pits private profit against
public good. Analogously to the necessary functional limitations of SaaS platforms,
artificially limiting knowledge organization opens space for new products and profit
opportunities. In their 2020 shareholder report, RELX, the parent of Elsevier, lists
increasing the number of journals and papers as a primary means of increasing rev-
enue [255] . This represents a shift in their business model from subscriptions to
deals like open access, which according to RELX CEO Erik Nils Engström “is where
revenue is priced per article on a more explicit basis” [440] .

In the next breath, they describe how “in databases & tools and electronic reference,
representing over a third of divisional41 revenue, we continued to drive good growth 41 RELX is a huge information conglomerate, and

scientific publication is just one division.
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through content development and enhanced machine learning [ML] and natural
language processing [NLP] based functionality.”

What ML and NLP systems are they referring to? The 2019 report is a bit more
revealing (emphases mine):

Elsevier looks to enhance quality by building on its premium brands and grow
article volume through new journal launches, the expansion of open access
journals and growth from emerging markets; and add value to core platforms by
implementing capabilities such as advanced recommendations on ScienceDi-
rect and social collaboration through reference manager and collabora-
tion tool Mendeley.

In every market, Elsevier is applying advancedML andNLP techniques to
help researchers, engineers and clinicians perform their work better. For example,
in research, ScienceDirect Topics, a free layer of content that enhances the user
experience, uses ML and NLP techniques to classify scientific content and
organise it thematically, enabling users to get faster access to relevant results
and related scientific topics. The feature, launched in 2017, is proving popular,
generating 15% of monthly unique visitors to ScienceDirect via a topic page. El-
sevier also applies advancedML techniques that detect trending topics per
domain, helping researchers make more informed decisions about their research.
Coupledwith the automated profiling and extraction of funding body in-
formation from scientific articles, this process supports the whole researcher
journey; from planning, to execution and funding. [441]

Reading between the lines, it’s clear that the difficulty of finding research is a feature,
not a bug of their system. Their explicit business model is to increase the number of
publications and sell organization back to us with recommendation services. The
recommendation system might be free42, but the business is to maintain the self- 42 “free”
reinforcing system of prestige where researchers compete for placement in highly
visible journals to stand out among a wash of papers, in the process reifying the
mythology [442] of the “great journals.” With semantic structure to locate papers,
it becomes much more difficult to sell high citation count as a product — people can
find what they need, rather than needing to pay attention to a few high-profile jour-
nals. Without it, which papers might a paper discovery system created by a publisher
recommend? The transition from a strictly journal-based discovery system to a ma-
chine learning powered search and feed model mirrors the strategic displacement of
explicit organization by search in the rest of the digital economy, and presents simi-
lar opportunities for profit. Every algorithmically curated feed is an opportunity to
sell ad placement43 — which they proudly describe as looking very similar to their 43 a strategy that the reprehensible digital marketing

disciplines call “native advertising” [443, 444]research content [445, 377] .

The extended universe of profitmaking from knowledge disorganization gets more
sinister: Elsevier sells multiple products to recommend ‘trending’ research areas
likely to win grants, rank scientists, etc., algorithmically filling a need created by
knowledge disorganization. The branding varies by audience, but the products are
the same. For pharmaceutical companies “scientific opportunity analysis” promises
custom reports that answer questions like “Which targets are currently being stud-
ied?” “Which experts are not collaborating with a competitor?” and “How much
funding is dedicated to a particular area of research, and how much progress has
been made?” [446] . For academics, “Topic Prominence in Science” offers uni-
versity administrators tools to “enrich strategic research planning with portfolio

https://www.elsevier.com/solutions/professional-services/drug-design-optimization#opportunity
https://www.elsevier.com/solutions/scival/features/topic-prominence-in-science#how
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overviews of their own and peer institutions.” Researchers get tools to “identify
experts and potential cross-sector collaborators in specific Topics to strengthen their
project teams and funding bids and identify Topics which are likely to be well funded.”
[447] This reflects RELX’s transition “from electronic reference, information ref-
erence tools, databases to […] analytics and decision tools.” [? ] Publishing is old
news, the real money is in tools for extending control through the rest of the process
of research.

These tools are, of course, designed for a race to the bottom — if my colleague is get-
ting an algorithmic leg up, how can I afford not to? Naturally only those labs that
can afford them and the costs of rapidly pivoting research topics will benefit from
them, making yet another mechanism that reentrenches scientific inequity for profit.
Knowledge disorganization, coupled with a little surveillance capitalism that moni-
tors the activity of colleagues and rivals [233, 448] , has given publishers powerful
control over the course of science, and they are more than happy to ride algorithmi-
cally amplified scientific hype cycles in fragmented research bubbles all the way to
the bank.

One more turn of the screw: the ability of the (former) publishers to effectively in-
vent the metrics that operationalize “prestige” in the absence of knowledge organiza-
tion systems gives them broad leverage with governments and funding agencies. In
an environment of continuously dwindling budgets and legislative scrutiny, seem-
ingly mutually beneficial platform contracts offer the sort of glossy comfort that
only predictive analytics can. In 2020 the National Research Foundation of Korea
(NRF) and Elsevier published a joint report that used a measurement derived from
citation counts - “Field-weighted citation impact”, or FWCI - to argue for the un-
derrated research prestige of South Korea [449] . While I don’t dispute the value
of South Korea’s research program, the apparent bargain that was struck is chilling.
South Korea gets a very fancy report arguing that more scientists in other countries
should work with theirs, and Elsevier gets to cement itself into the basic operation
of science. Elsevier controls the journals that can guarantee high citation counts
and the metrics built on top of them. The Brain Korea program Phase II report 44 44 the result of another corporate collaboration

with the Rand corporation.[450] , issued just before the 2009 formation of the NRF argued that rankings and
funding should be dependent on citation counts. The NRF now relies on SciVal
and their FWCI measurement as a primary means of ranking researchers and deter-
mining funding, built into the Brain Korea 21 funding system [451, 452] . Without
exaggeration, scientific disorganization and reliance on citation counts allowed El-
sevier to buy control over the course of research in South Korea.

The consequences for science are hard to overstate. In addition to literature search
being an unnecessarily huge sink of time and labor, science operates as a wash of
tail-chasing results that only rarely seem to cumulatively build on one another. The
need to constantly reinforce the norm that purposeful failure to cite prior work is re-
search misconduct is itself a symptom of how engaging with a larger body of work is
both extremely labor intensive and strictly optional in the communication regime of
journal publication. The combination of more publications translating into more
profit and the strategic disorganization of science contributes to conditions for sci-
entific fraud. An entirely fraudulent paper can be undetectable even by domain
experts. Since papers can effectively be islands — given legitimacy by placement in a
journal strongly incentivized to accept all comers — and there is no good means of
evaluating them in context with their immediate semantic neighbors, investigating
fraud is extremely time consuming and almost entirely without reward. And since
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traditional peer review happens once, rather than as a continual public process, the
only recourse outside of posting on PubPeer is to wait on journal editorial boards
to self-police by reviewing each individual complaint. Forensic peer-reviewers have
been ringing the alarm bell, saying that there is “no net” to bad research [453] , and
brave and highly-skilled investigators like Elisabeth Bik have found thousands of
papers with evidence of purposeful manipulation [454, 455] . The economic struc-
ture of for-profit journals pits their profit model against their function as providing
a venue for peer review — the one function most scientists are still sympathetic to.
Trust in science is critical for addressing our most dire problems from global pan-
demics to climate change [456] , but attitudes towards scientists are lukewarm at
best [457] . Even when it isn’t fake news, why would anyone trust us when it’s ef-
fectively impossible to find or assess the quality of scientific information? [458] Not
even scientists can: despite the profusion of papers, by some measures progress in
science has slowed to a crawl [459] .

While Chu and Evans [459] correctly diagnose symptoms of knowledge disorganiza-
tion like the need to “resort to heuristics to make continued sense of the field” and re-
liance on canonical papers, by treating the journal model as a natural phenomenon
and citation as the only means of ordering research, they misattribute root causes.
The problem is not people publishing toomany papers, or a breakdown of traditional
publication hierarchies, but the staggering profitability of knowledge disorganization.
Knowledge disorganization is precisely the precondition of information-as-capital
and the outcome of its concentration by our century’s robber barons (see [460] ).
Their prescription for “a clearer hierarchy of journals” misses the role of organiz-
ing scientific work in journals ranked by prestige, rather than by the content of the
work, as a potentially major driver of extremely skewed citation distributions. It also
misses the publisher’s stated goals of publishing more papers within an ecosystem of
algorithmic recommendations, and there is nothing recommendation algorithms
love recommending more than things that are already popular. Without diagnosing
knowledge disorganization as a core part of the business model of scientific publish-
ers, we can be led to prescriptions that would make the problem worse.

It’s hard to imagine an alternative to journals that doesn’t look like, well, journals.
While a full treatment of the journal system is outside the scope of this paper, the
system we describe here renders them effectively irrelevant by making papers as we
know them unnecessary. Rather than facing the massive collective action problem
of asking everyone to change their publication practices on a dime, by reconsidering
the way we organize the surrounding infrastructure of science we can flank journals
and replace them “from below” with something qualitatively more useful.

Beyond journals, the other technologies of communication that have been adopted
out of need, though not necessarily design, serve as desire paths that trace other
needs for scientific communication. As a rough sample: Researchers often prepare
their manuscripts using platforms like Google Drive, indicating a need for collabora-
tive tools in preparation of an idea. When working in teams, we often use tools like
Slack to plan our work. Scientific conferences reflect the need for federated commu-
nication within subdisciplines, and we have adopted Twitter as a de facto platform
for socializing and sharing our work to a broader audience. We use a handful of blogs
and other sites like OpenBehavior [461] , Open Neuroscience, and many others to
index technical knowledge and tools. Last but not finally, we use sites like PubPeer
and ResearchGate for comment and criticism.

These technologies point to a few overlapping and not altogether binary axes of com-

https://scienceintegritydigest.com/
https://en.wikipedia.org/wiki/Desire_path
https://edspace.american.edu/openbehavior/
https://open-neuroscience.com/
https://pubpeer.com
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munication systems.

• Durable vs Ephemeral - journals seek to represent information as permanent,
archival-grade material, but scientific communication also necessarily exists as
contextual, temporally specific snapshots.

• Structured vs Chronological - scientific communication both needs to present
itself as a structured basis of information with formal semantic linking, but also
needs the chronological structure that ties ideas to their context. This axis is a
gradient from formally structured references, through intermediate systems like
forums with hierarchical topic structure that embeds a feed, to the purely chrono-
logical feed-based social media systems.

• Messaging vs Publishing - Communication can be person-to-person, person-
to-group with defined senders and recipients, or person-to-all statement to an
undefined public. This ranges from private DMs through domain-specific tool
indexes like OpenBehavior through the uniform indexing of Wikipedia.

• Public vs. Private - Who gets to read, who gets to contribute? Communication
can be composed of entirely private notes to self, through communication in a
lab, collaboration group, discipline, and landing in the entirely public realm of
global communication.

• Formal vs. Informal - Journal articles and encyclopedia-bound writing that con-
forms to a particular modality of expression vs. a vernacular style intended to
communicate with people outside the jargon culture.

• Push vs. Pull - Do you go to get information from a reference location, or does
information come to you as an alert or message? Or, generally, where is the in-
formation “located,” is an annotation pushed and overlaid on a document, or
stored elsewhere requiring the audience to explicitly pull it?

“Peer reviewed vs. unrefereed” is purposely excluded as an axis of communication
tools, as the ability to review and annotate multiple versions of a document — sub-
ject to the context of the medium — should be a basic part of any communication
system. Fear over losing the at once immutable but also paradoxically fragile ecosys-
tem of journal-led peer review is one of the first strawmen that stops consideration
of radically reorganizing scientific communication45. The belief that peer review as 45 For a recent example, see the responses to Dan

Goodman’s argument why he has stopped doing
pre-publication peer review altogether [462? ]

we know it is an intrinsic part of science is ahistorical (eg. [463] ), and the belief that
journal-led peer review is somehow a unique venue for evaluating scientific work
ignores the immense quantity of criticism and discussion that happens in almost
every communicative context, scientific and otherwise. The notion that the body
of scientific knowledge is best curated by passing each paper through a gauntlet of
three anonymous reviewers, after which it becomes Fact is ridiculous on its face. Fo-
cusing on preserving peer review is a red herring that unnecessarily constrains the
possible forms of scientific communication. Instead we will try and sketch systems
that address the needs for communication and knowledge organization left unmet
precisely because of the primacy of peer reviewed journal publications.

Clearly a variety of different types of communication tools are needed, but there is
no reason that each of them should be isolated and inoperable with the others. We
have already seen several of the ideas that help bring an alternative into focus. Piracy
communities demonstrate ways to build social systems that can sustain distributed
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infrastructure. Federated and protocol-based systems show us that we don’t need
to choose between a single monolithic system or many disconnected ones, but can
have a heterogeneous space of tools linked by a basic protocol. The semantic web
gives us the unfilled promise of triplet links as a very general means of structuring
data and building interfaces for disparate systems. We can bridge these lessons with
some from wiki culture to get a more practical sense of distributed governance and
organization. Together with our sketches of data, analytical, and experimental tools
we can start imagining a system for coordinating them — as well as displacing some
of the more intractable systems that misstructure the practice of science.

10.4.1 TheWikiWay

If we take radical collaboration as our core, then it becomes clear that extending
Wikipedia’s success doesn’t simply mean installing more copies of wiki software
for different tasks. It means figuring out the key principles that make radical col-
laboration work. What kinds of projects is it good for? How do you get them
started? How do you keep them growing? What rules do you put in place? What
software do you use? [464]

So that’s it — insecure but reliable, indiscriminate and subtle, user hostile yet easy
to use, slow but up to date, and full of difficult, nit-picking people who exhibit a
remarkable community camaraderie. Confused? Any other online community
would count each of these “negatives” as a terrible flaw, and the contradictions
as impossible to reconcile. Perhaps wiki works because the other online commu-
nities don’t. [465] and in WhyWikiWorks

46

46 Interestingly, this quote is almost, but not exactly
the same as that on Ward’s wiki: “So that’s it -
insecure, indiscriminate, user-hostile, slow, full of
difficult, nit-picking people, and frivolous. Any
other online community would count each of these
strengths as a terrible flaw. Perhaps wiki works
because the other online communities do not.” I
can’t tell if Ward Cunningham wrote the original
entry in the wiki, but in any case seems to have
found a bit of optimism in the book.

Aside from maybe the internet itself, there is no larger public digital knowledge or-
ganization effort than Wikipedia. While there are many lessons to be learned from
Wikipedia itself, it emerged from a prior base of thought and experimentation in rad-
ically permissive, self-structuring read/write — sometimes called “peer production”
[466] — communities. Wikis are now quasi-ubiquitous47, perhaps largely thanks to 47 though their corporate manifestations would

probably be unrecognizable to the project early
wiki users imagined.

Wikipedia, but its specific history and intent to be an encyclopedia entwines it with
a very particular technological and social system that obscures some of the broader
dreams of early wikis.

Aaron Swartz recounts a quote from Jimmy Wales, co-founder of Wikipedia:

“I’m not a wiki person who happened to go into encyclopedias,” Wales told the
crowd at Oxford. “I’m an encyclopedia person who happened to use a wiki.”
[467]

And further describes how this origin and mission differentiates it from other inter-
net communities:

But Wikipedia isn’t even a typical community. Usually Internet communities are
groups of people who come together to discuss something, like cryptography or
the writing of a technical specification. Perhaps they meet in an IRC channel, a
web forum, a newsgroup, or on a mailing list, but the focus is always something
“out there”, something outside the discussion itself.

http://wiki.c2.com/?WhyWikiWorks
http://wiki.c2.com/?WhyWikiWorks
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But with Wikipedia, the goal is building Wikipedia. It’s not a community
set up to make some other thing, it’s a community set up to make itself. And
since Wikipedia was one of the first sites to do it, we know hardly anything about
building communities like that. [464]

We know a lot more now than in 2006, of course, but Wikipedia still has outsized
structuring influence on our beliefs about what Wikis can be. Wikipedia has since
spawned a large number of technologies and projects like Wikidata and Wikimedia
Commons, each with their own long and occasionally torrid histories. I won’t dwell
on the obvious and massive feat of collective organization that the greater Wikipedia
project represents — we should build on and interoperate with its projects and re-
spect the amount of work the foundation and its editors have put in to preserve
free access to information, but learning from its imperfections is more useful to us
here, especially for things that aren’t encyclopedias. The dream of a centralized, but
mass-edited “encyclopedia of everything” seems to be waning, and its slow retreat
from wild openness has run parallel to a long decline in contributors [466, 468] .
Throughout that time, there has been a separate (and largely skeptical) set of wiki
communities holding court on what a radically open web can be like, inventing their
worlds in real time. These communities have histories that are continuous with
one another, and in their mutual reaction and inspiration sometimes teach similar
lessons from across the divides of their very different structure.

The first wiki was launched in 199548 (it’s still up) and came to be known as Ward’s 48 it’s complicated: WardsWikiTenthAnniversary
wiki after its author WardCunningham. Technically, it was extremely simple: a
handful of TextFormattingRules and use of WikiCase where if you JoinCapitalized-
Words you create a link to a (potentially new) WikiPage — and the ability for anyone
to edit any page. These very simple WikiDesignPrinciples led to a sprawling and con-
tinuous conversation that spanned more than a decade and thousands49 of pages 49 23,244 unique page names according to the edit

history, but the edit history was also purposely
pruned from time to time.

that, because of the nature of the medium, is left fully preserved in amber. Those
conversations are a history of thought on what makes wiki communities work (eg.
WhyWikiWorks, WhyWikiWorksNot), and what is needed to sustain them.

One tension that emerged early without satisfying resolution is the balance between
“DocumentMode” writing that serves as linearly-readable reference material, similar
to that of Wikipedia, and “ThreadMode” writing that is a nonlinear representation
of a conversation. Order vs spontaneity is a fundamental challenge of inventing cul-
ture in plaintext. The purpose of using a wiki as opposed to other technologies that
existed at the time like bulletin boards, newsgroups, IRC, etc. was that it provided
a means of fluid structure50. The parallel need to communicate and attribute work 50 Giving a means of organizing the writing of the

Portland Pattern Repository was the reason for
creating Ward’s Wiki in the first place.

made it a seeming inevitability that even if you went out of your way to restructure
a lot of writing into a sensible DocumentMode page, someone would soon after
create a new horizontal divider and start a fresh ThreadMode section.

Ward Cunningham and other more organizationally-oriented contributors opposed
ThreadMode (eg. ThreadModeConsideredHarmful, InFavorOfDissertation) for a
number of reasons, largely due to the ThreadMess and WikiChaos it had the poten-
tial of creating.

I occasionally suggest how this site should be used. My GoodStyle suggestions
have been here since the beginning and are linked from the edit page should
anyone forget. I have done my best to discourage dialog InFavorOfDissertation
which offers a better fit to this medium. I’ve been overruled. I will continue to

https://meta.wikimedia.org/wiki/Complete_list_of_Wikimedia_projects
https://meta.wikimedia.org/wiki/Wikidata
https://commons.wikimedia.org/wiki/Main_Page
https://commons.wikimedia.org/wiki/Main_Page
http://wiki.c2.com/
http://wiki.c2.com/?WardsWikiTenthAnniversary
http://wiki.c2.com/?WardCunningham
http://wiki.c2.com/?TextFormattingRules
http://wiki.c2.com/?WikiCase
http://wiki.c2.com/?JoinCapitalizedWords
http://wiki.c2.com/?JoinCapitalizedWords
http://wiki.c2.com/?WikiPage
http://wiki.c2.com/?WikiDesignPrinciples
http://wiki.c2.com/?WardsWikiTenthAnniversary
http://c2.com/wiki/history/
http://wiki.c2.com/?WhyWikiWorks
http://wiki.c2.com/?WhyWikiWorksNot
http://wiki.c2.com/?DocumentMode
http://wiki.c2.com/?ThreadMode
http://wiki.c2.com/?ThreadModeConsideredHarmful
http://wiki.c2.com/?InFavorOfDissertation
http://wiki.c2.com/?ThreadMess
http://wiki.c2.com/?WikiChaos
http://wiki.c2.com/?GoodStyle
http://wiki.c2.com/?InFavorOfDissertation
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make small edits to pages for the sake of brevity. – WardCunningham [469]

Most pages are thus a combination of both, usually with some DocumentMode
text at the top with ThreadMode conversations interspersed throughout without
necessarily having any clean delineation between the two. Far from just being raw
disorder, this mixed mode of writing gave it a peculiar character of being both a folk
reference for a library of concepts as well as a history of discussion that made the
contingency of that reference material plain. Beka Valentine put it well:

c2wiki is an exercise in dialogical methods. of laying bare the fact that knowledge
and ideas are not some truth delivered from On High, but rather a social process,
a conversation, a dialectic, between various views and interests [470]

This tension and its surrounding discussions point to the need for multiple repre-
sentations of a single idea: that both the social and reference representations of a
concept are valuable, but aren’t necessarily best served by being represented in the
same place. There was relatively common understanding that the intended order of
things was to have many ThreadMode conversations that would gradually be con-
verted to DocumentMode in a process of BrainStormFirstCleanLater. Many pro-
posed solutions orbit around making parallel pages with similar names (like <page-
name>Discussion) to clean up a document while preserving the threads (though
there were plenty of interesting alternatives, eg. DialecticMode)51. 51 Contemporary wikis have continued this

conversation, see DocumentsVsMessages on
communitywiki.orgWikipedia, in its attendant WikiEngine MediaWiki, cut the Gordian Knot by split-

ting each page into a separate Article and Talk pages, with the talk page in its own
Namespace – eg. Gordian_Knot vs Talk:Gordian_Knot. Talk pages resemble a lot
of the energy of early wikis: disorganized, sometimes silly, sometimes angry, and
usually charmingly pedantic. Namespaces extend the traditional “everything is a
page” notion encoded in the WikiCase link system by giving different pages differ-
ent roles. In addition to having parallel conversations on articles and talk pages, it
is possible to have template pages that can be included on wiki pages with {% raw
%}{{double curly bracket}}{% endraw %} syntax – eg. Template:Citation_Needed
renders {% raw %}{{Citation needed}}{% endraw %} as [citation needed]. Talk
pages have their own f unctional differentiation, with features for threading and
annotating discussions that aren’t present on the main article pages (see Wikipedia:Flow
[471] ). Generalized beyond the context of wikis, functional differentiation of a sin-
gle item into its multiple representations is relatively common in computing: eg.
this document exists as a git repository, the rendered page, a pdf, hypothes.is anno-
tations, etc.

The complete segregation of discussion to Talk pages is driven by Wikipedia’s ex-
clusivity as an encyclopedia, with reminders that it is the “sole purpose” peppered
throughout the rules and guidelines. The presence of messy subjective discussions
would of course be discordant with the very austere and “neutral” articles of an en-
cyclopedia. There are no visible indications that the talk pages even exist in the main
text, and so even deeply controversial topics have no references to the conversations
in talk pages that contextualize them — despite this being a requested feature by
both administrators and editors [472] .

Talk pages serve as one of the primary points of coordination and conflict resolu-
tion on Wikipedia, and also provide a low-barrier entrypoint for questions posed
to a space they perceive to be “an approachable community of experts” [473] . The
separation of Talk pages and the labyrinthine rules governing their use function to

http://wiki.c2.com/?WardCunningham
http://wiki.c2.com/?BrainStormFirstCleanLater
http://wiki.c2.com/?ConvertThreadModeToDocumentMode
http://wiki.c2.com/?ConvertThreadModeToDocumentMode
http://wiki.c2.com/?DialecticMode
https://communitywiki.org/wiki/DocumentsVsMessages
http://wiki.c2.com/?WikiEngines
https://meta.wikimedia.org/wiki/MediaWiki
https://en.wikipedia.org/wiki/Gordian_Knot
https://en.wikipedia.org/wiki/Talk:Gordian_Knot
https://en.wikipedia.org/wiki/Template:Citation_needed
https://en.wikipedia.org/wiki/Wikipedia:Flow
https://github.com/sneakers-the-rat/infrastructure
https://jon-e.net/infrastructure/goback.html
https://jon-e.net/infrastructure/tex/decentralized_infrastructure_render.pdf
https://en.wikipedia.org/wiki/Wikipedia:Don't_lose_the_thread#Move_to_the_article_talk_page
https://en.wikipedia.org/wiki/Wikipedia:Talk_page_guidelines
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obscure the dialogical and collective production of knowledge at the heart of wikis
and Wikipedia. The body of thought that structures Wikipedia, most of which is in
its Wikipedia:* namespace, is immense and extremely valuable, but is largely hidden
except from those who care to look for it. Since Wikipedia is “always already there”
often without trace of its massively collective nature, relatively few people ever con-
tribute to it. Reciprocally, since acknowledging personal contribution is or point of
view is explicitly against some of its core policies and traditions, there is little public
credit outside the Wikipedia community itself for the labor of maintaining it.

The forking of Wards Wikis into the first SisterSites teaches a parallel strain of lessons.
Ward’s Wiki started as a means of organizing knowledge for the Portland Pattern
Repository52, a programming community (referred to as DesignPatterns below), 52 The initial motivations are actually stunningly

close to the kinds of communication and knowl-
edge organization problems we are still solving
today (even in this piece)

“Cunningham had developed a database to
collect the contributions of the listserv members.
He had noticed that the content of the listserv
tended to get buried, and therefore the most recent
post might be under-informed about posts which
came before it. The way around this problem
was to collect ideas in a database, and then edit
those ideas rather than begin anew with each
listserv posting. Cunningham’s post states that
“The plan is to have interested parties write web
pages about the People, Projects and Patterns that
have changed the way they program. Short stories
that hint at patterns are welcome too.” As to the
rhetorical expectations, Cunningham added “The
writing style is casual, like email or netnews, but
doesn’t have to be so repetitive since the things
being discussed don’t disappear. Think of it as a
moderated list where anyone can be moderator and
everything is archived. It’s not quite a chat, still,
conversation is possible.” - [474]

and in 1998 they were overwhelmed with proponents of ExtremeProgramming (or
XP), which caused the first fissure in the wiki:

XP advocates seemed to be talking about XP at every possible opportunity and seem-
ingly on every page with content the least bit related to software development. This
annoyed a number people who were here to discuss patterns, leading to the tag XpFree-
Zone, as a request not to talk about ExtremeProgramming on that page.

It was difficult to pick out the DesignPatterns discussion on RecentChanges53, be-

53 Recent Changes was the dominant, if not
controversial means of keeping track with recent
wiki traffic, see RecentChangesJunkie

cause most of the activity was related to ExtremeProgramming. Eventually, most of
the DesignPatterns people left, to discuss patterns in a “quieter” environment, and
people started referring to this site as WardsWiki instead of the PortlandPatternRepos-
itory [469]

One of the first and most influential Sister Sites was Meatball Wiki, described on
Wards Wiki:

SunirShah founded MeatballWiki to absorb and enlarge the discussion of what
wiki and wiki like sites might be. That discussion still simmers here. But here
it can take on a negative tone sounding more like complaining. On meatball,
under Sunir’s careful leadership, the ideas, wild or not, stay amazingly upbeat. -
SisterSites

MeatballWiki became the spiritual successor to Ward’s Wiki, which at that point
had its own momentum of culture less interested in being the repository of wiki
thought54. Meatball has its own prolific history of thought, including reflections 54 There seems to have been an overriding belief

that theoretical ideas about wikis and wiki culture
belong on Meatball Wiki, from WikiWikiWebFaq:
> Q: Do two separate wikis ever merge together to
create one new wiki? Has this happened before?
Keep in mind that I don’t just mean two different
pages within a wiki. (And for that matter, where
is an appropriate page where I can post questions
about the history of all wikis, not just this one?) >
> A1: I don’t know of any such wiki merge, nor
of any discussion of the history of all wikis. Such
a discussion should probably reside (if created) on
MeatballWiki.

on its very existence as a SisterSite. These were a series of discussions that melded
thoughts from open source computing with social systems; in part: RightToFork,
RightToLeave, EnlargeSpace, and TransClusion.

What can be done when the internal divisions in a wiki community and the weight
of its history make healthy contribution impossible? The simplest is to exercise the
RightToLeave, as it is almost always possible to just stop being part of a digital com-
munity. This approach is clearly the most destructive, as it involves abandoning the
emotional bonds of a community, prior work (see the WikiMindWipe where a user
left and took all their contributions with them), and doesn’t necessarily provide an
alternative that alleviates the cause of the tension. The next idea is to fork the com-
munity, where its body — in the case of wikis the pages and history — can be du-
plicated so that it can proceed along two parallel tracks. Exercising the right to fork
is, according to Meatball, “people exercising their RightToLeave whilst maintaining
their emotional stake” [475] .
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The discussion around the Right to Fork on Meatball is far from uniformly positive,
and is certainly colored by the strong presence of its BenevolentDictator Sunir Shah
who viewed it as a last resort after all attempts at ConflictResolution have failed.
They point to the potentially damaging effects of a fork, like bitterness, disputes
over content ownership (see MeatballIsNotFree), and potentially an avoidance of
conflict resolution that is a normal and healthy part of any community. Others place
it more in the realm of a radical political action rather than a strictly social action.
Writing about the fork of OpenOffice to LibreOffice, Terry Hancock writes:

[In] proprietary software [a] political executive decision can kill a project, regard-
less of developer or user interest. But with free software, the power lies with the
people who make it and use it, and the freedom to fork is the guarantee of that
power. […] The freedom to fork a free software project is [a] “tool of revolution”
intended to safeguard the real freedoms in free software. [476]

Forking digital communities can be much less acrimonious than physically-based
communities because of the ability to EnlargeSpace given by the medium:

In order to preserve GlobalResources, create more public space. This reduces lim-
ited resource tension. Unlike the RealWorld, land is cheap online. In effect, this
nullifies the TragedyOfTheCommons by removing the resource pressure that cre-
ated the “tragedy” in the first place. You can’t overgraze the infinity. - [477]

Enlarging space has the natural potential to make the broader social scene bewil-
dering with a geyser of pages and communities, but can be made less damaging by
having mechanisms to link histories, trace their divergence, and potentially resolve a
fork as is common in open source software development. Forking is then a natural
process of community regeneration, allowing people to regroup to make healthier
spaces when needed, where the fork is itself part of the history of the community
rather than an unfathomable rift.

Forking communities is not the same as forking community resources: “you can’t
fork a community […] what you can do is fork the content and to split the commu-
nity” [478] . As described so far, a fork divides people into unreconciled and separate
communities. In some cases this makes forking difficult, in others it makes it impos-
sible: the prime example, again, is Wikipedia. It is simply too large and too culturally
dominant to fork. Even though it is technically possible to fork Wikipedia, if you
succeeded, then what? Who would come with you to build it, and who would that
be useful for? This is partly a product of its totalizing effort to be an encyclopedia
of everything (what good would another encyclopedia of everything be?) but also
the weight of history: you won’t get enough long-encultured Wikipedians to join
you, and you probably won’t be able to recruit a new generation of them on your
own.

The last major effort to fork Wikipedia was in 2002 with an effort led by Edgar
Enyedy to move the Spanish Wikipedia to The Enciclopedia Libre Universal en Es-
pañol [479, 480] . Though it was brief and unsuccessful, Enyedy claims that be-
cause Jimmy Wales was worried about other non-English communities following
their lead, he and the other admins capitulated to the demands for no advertising
and a transfer to a .org domain, among others55. Even a politically symbolic fork is 55 Jimmy Wales, naturally, disputes this characteri-

zation of events.dependent on the perceived threat to the original project, and that window seems
to have been closed after 2002.

http://meatballwiki.org/wiki/BenevolentDictator
http://meatballwiki.org/wiki/ConflictResolution
http://meatballwiki.org/wiki/MeatballIsNotFree
http://meatballwiki.org/wiki/EnlargeSpace
http://meatballwiki.org/wiki/GlobalResource
http://meatballwiki.org/wiki/RealWorld
http://meatballwiki.org/wiki/GlobalResource
https://en.wikipedia.org/wiki/Wikipedia:FAQ/Forking#Am_I_allowed_to_fork_Wikipedia?
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The cultural tensions and difficulties that lead other wikis and projects to fork have
taken their toll on the editorship and culture of Wikipedia. The community is
drawn into dozens of conflicting philosophical camps: the Deletionists56 vs. the 56 Also see Association of Wikipedians Who Dislike

Making Broad Judgments About the Worthiness
of a General Category of Article, and Who Are
in Favor of the Deletion of Some Particularly
Bad Articles, but That Doesn’t Mean They Are
Deletionists

Inclusionists, Eventualists vs. Immediatists, Mergists vs. Separatists, and yes even
a stub page for Wikisecessionism. Editorship has steadily declined from a peak in
2007. Its relatively invisible community systems make it mostly a matter of chance
or ideology that new contributors are attracted in the first place. In its calcification
of norms, largely to protect against legitimate challenges to the integrity of the ency-
clopedia, any newcomers that do find their way into editing now have little chance
to catch a foothold in the culture before they are frustrated by (sometimes algorith-
mic) rejection [466, 468] .

Arguably all internet communities have some kind of life cycle, so the question be-
comes how to design systems that support healthy forking without replicating the
current situation of fragmentation. Wikis, including Meatball and MediaWiki, as
well as other projects like Xanadu often turn to transclusion— or being able to ref-
erence and include the content of one wiki (or wiki page) in another. Rather than
copying and pasting, the remote content is kept updated with any changes made to
it.

Transclusion naturally brings with it a set of additional challenges: Who can tran-
sclude my work? Whose work can I transclude? Can my edits be propagated back
to their work? What can be transcluded, at what level of granularity, and how?
While before we had characterized splitting communities as an intrinsic part of a
fork, that need not be the case in a system built for transclusion. Instead relation-
ships post-fork are then made an explicit social process within the system, where even
if a community wants to work as separate subgroups, it is possible for them to arrive
at some agreement over what they want to share and what they want to keep sepa-
rate. This kind of decentralized work system resembles radical organizing tactics like
affinity groups where many autonomous groups fluidly work together or separately
on an array of shared projects without aspiring to create “one big movement” [481]
. Murray Bookchin describes:

The groups proliferate on a molecular level and they have their own “Brownian
movement.” Whether they link together or separate is determined by living situ-
ations, not by bureaucratic fiat from a distant center. […]

[N]othing prevents affinity groups from working together closely on any scale re-
quired by a living situation. They can easily federate by means of local, regional
or national assemblies to formulate common policies and they can create tempo-
rary action committees (like those of the French students and workers in 1968)
to coordinate specific tasks. […] As a result of their autonomy and localism, the
groups can retain a sensitive appreciation of new possibilities. Intensely experi-
mental and variegated in lifestyles, they act as a stimulus on each other as well as
on the popular movement. [482]

To cherrypick a few lessons from more than 25 years of thought from tens of thou-
sands of people: The differing models of document vs. thread modes and separate
article vs. talk pages show us that usingnamespaces is an effective way to bridge mul-
timodal expression on the same topic across perceived timescales or other conflict-
ing communicative needs. This is especially true when the namespaces have f unc-
tional differentiation57 like the tools for threading conversations on Wikipedia 57 Tim Berners-Lee described this notion of

functional differentiation in a much more general
way in describing the nature of the URI: > The
technology should define mechanisms wherever
possible without defining policy. > > because
we recognize here that many properties of URIs
are social rather than technical in origin. > >
Therefore, you will find pointers in hypertext
which point to documents which never change
but you will also find pointers to documents
which change with time. You will find pointers to
documents which are available in more than one
format. You will find pointers to documents which
look different depending on who is asking for them.
There are ways to describe in a machine or human
readable way exactly what sort of repeatability you
would expect from a URI, but the architecture of
the Web is that that is for something for the owner
of the URI to determine. https://www.w3.org/
DesignIssues/Axioms.html

Talk pages and the parsing and code generation tools of Templates. These names-
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paces need to be visibly crosslinked both to preserve the social character of knowl-
edge work, but also to provide a means of credit assignment and tool development
between namespaces. Any communication system needs to be designed to prior-
itize ease of leaving and ease of forking such that a person can take their work
and represent it on some new system or start a new group to encourage experimen-
tation in governance models and technologies. One way of accomplishing these
goals might be to build a system around social transclusion such that work across
many systems and domains can be linked into a larger body of work without need-
ing to create a system that becomes too large to fork. The need for communica-
tion across namespaces and systems, coupled with transclusion further implies the
need for bidirectional transclusion so that in addition to being able to transclude
something in a document, there is visible representation on the original work be-
ing transcluded (eg. commented on, used in an analysis, etc.) by allowed peers and
federations.

These lessons, coupled with those from private bittorrent trackers, linked data com-
munities, and the p2p federated system we have sketched so far give us some guide-
lines and motivating examples to build a varied space of communication tools to
communicate our work, govern the system, and grow a shared, cumulative body of
knowledge.

10.4.2 Rebuilding Scientific Communication

It’s time to start thinking about interfaces. We have sketched our system in turtle-
like pseudocode, but directly interacting with our linking syntax would be labor
intensive and technically challenging. Instead we can start thinking about tools for
interacting with it in an abstract way. Beneath every good interface we’re familiar
with, a data model lies in wait. A .docx file is just a zipped archive full of xml, so a
blank word document that contains the single word “melon” is actually represented
(after some preamble) like:

<w:body>
<w:p

w14:paraId="0667868A"
w14:textId="50600F77"
w:rsidR="002B7ADC"
w:rsidRDefault="00A776E4">
<w:r>

<w:t>melon</w:t>
</w:r>

</w:p>
</w:body>

Same thing with jupyter notebooks, where a block of code:

>>> rating = 100
>>> print(f'I rate this dream {rating}')
'I rate this dream 100'

is represented as JSON (simplified for brevity):
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{
"cell_type": "code",
"id": "thousand-vermont",
"outputs": [{

"name": "stdout",
"output_type": "stream",
"text": [

"I rate this dream 100\n"
]

}],
"source": [

"rating = 100\n",
"print(f'I rate this dream {rating}')"

]
}

So we are already used to working with interfaces to data models, we just need to
think about what kind of interfaces we need for a scientific communication system.

Let’s pick up where we left off with our linked data and tools. Recall that we had a
project named #my-project that linked an experiment, a few datasets that it pro-
duced, and an analysis pipeline that we ran on it. We could just ship the raw numbers
from the analysis, wash our hands of it, and walk straight into the ocean without
looking back, but usually scientists like to take a few additional steps to visualize the
data and write about what it means.

To explore the communicative tools that might be useful, we can start by consider-
ing traditional documents, and attempt to generalize them by separating their form
as “units” or “cells” of information with accompanying metadata from their repre-
sentation in interfaces for interacting and communicating about them.

Documents & Notebooks

Say we have reached the stage where we are writing a brief summary of our experi-
ment and analysis, but not yet at the stage of writing a “formal” scientific paper. We
might do so in a notebook-like [483] environment with different kinds of “cells,”
specifically cells that execute code and cells that render markdown. We want to plot
some of the results of our analysis, so to do that we might load the data and use
matplotlib [484] to make our point (Fig. 10.4)

Our notebook file would then include an array of JSON objects that describe the
contents of its cells. For example, our data loading cell would look something like
this:

{
"cell_type": "code",
"execution_count": 2,
"id": "rapid-information",
"metadata": {
"scrolled": true
},
"outputs": [

https://matplotlib.org/
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Figure 10.4: An example notebook where we use
some data loading framework that embeds the
linked dataset in the loading cell’s metadata field
and then plot it!

"..."
],
"source": [
"x, y, sizes = get_data('@jonny:my-project:Analysis1')"
]

}

The“outputs”description has been abbreviated above, but it describes to the jupyter
notebook server how to display it. Regular text piped through stdout is represented
like this:

{
"name": "stdout",
"output_type": "stream",
"text": [

"Downloading dataset @jonny:my-dataset\n",
"--------------------\n"

]

https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20Low%20Level.html
https://en.wikipedia.org/wiki/Standard_streams
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}

And multiple output types can be combined in a single cell, for example a widget
like our loading progress bar is described like this:

{
"data": {

"application/vnd.jupyter.widget-view+json": {
"model_id": "5799ac2959084a4596ffbad3f9940f48",
"version_major": 2,
"version_minor": 0

},
"text/plain": [

" 0%| | 0/100 [00:00<?, ?it/s]"
]
},
"metadata": {},

"output_type": "display_data"
}

where the model_id, version_major, and version_minor describe which render-
ing code to use for the cell, similarly to the “metadata that indicates code” that we
discussed in analytical frameworks.

Notice that there is already a metadata field! In order to link our notebook to our
analysis — and thus to our extended graph of data, experiment, etc. — we could
do it manually, but since we’re thinking about interfaces we can also imagine that
our p2p_framework is capable of filling it in for us. We don’t need to invent a new
metadata protocol for JSON, JSON-LD is already quite similar to the syntax we’ve
been using already. For simplicity, say we use a @comms ontology to denote various
features of our communication system. Our data loading function might then pop-
ulate a field in our cell like this:

"metadata": {
"scrolled": true,
"@comms:usesData": "@jonny:my-project:Analysis1"

}

Other frameworks might make their own metadata annotations, like an indication
that we’re plotting some feature of the data, or performing some statistical analysis
on the data. These annotations might be responsive to the parameterization of the
function call or its results, but if we emphasize a design process that makes inter-
faces at multiple levels we could also imagine using something like iPython “magic
commands” to declare metadata for our cell. For example, each cell is automatically
assigned a random combination of words as an ID, but if we wanted to be able to
specifically refer to a cell we could give it an explicit one:

%%meta @comms:cellID smilePlot
plt.scatter(x, y, s=sizes)

https://jupyterbook.org/en/stable/content/metadata.html
https://json-ld.org/
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html
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We’re familiar with two types of cells, code and markdown, but we can extend our
thinking to arbitrary cell types. What is a cell? A cell has a a) type that indicates its
capabilities and representation, b)metadata that describes it, we can also generalize
that to include arguments that parameterize it, and c) the content, or information
contained by the cell. The jupyter document model more or less reflects this already,
but in its base model only has code, markdown, and raw cell types, and the metadata
field is unstructured. Its extension system allows for additional cell types as well as
restructuring the program more generally, but since we’re focused on self-contained
documents we’ll limit our discussion to additional cell types.

From this it’s relatively trivial to imagine additional cell types that serve common
needs in academic writing: a citation cell type58 that takes a BibTeX object (or its 58 The original Jupyter Notebook paper describes

the need for this near the end [483] .fields) as arguments and then preserves the full metadata as well as renders it in a cho-
sen style. A figure cell type that takes an image or plot and a caption. A contributor
cell type that takes an author’s name, affiliation, ORCID, email, and so on. Cur-
rently jupyter extensions use the NPM registry, but we could imagine being able to
use other people’s cell types directly by referring to them like@jonny:celltypes:citation.

Notebooks have multiple levels of metadata, so we can also specify document-level
metadata that describe the type of our document (like a@schema:ScholarlyArticle),
its creativeWorkStatus as a Draft, our authorship information, permissions, and
whatever else we’d like. But what is a document? In the case of our jupyter notebook,
it’s a series of cell descriptions in a JSON array. Trivially, a document is a cell that
contains other cells. What about in the other direction? The contents of our cells
are also a cell-like system. The very notion of a programming language is a means of
mapping structured syntax to machine instructions, and to do that code (in some
languages) is interpreted or compiled by parsing it into an abstract syntax tree that
relates data and its structuring metadata. Markdown can also be thought of as a se-
ries of subcells, where using a # header indicates how the text is to be represented
as compared to *italic* text or [links](https://link.com). The use of a pro-
gramming language or markup syntax is represented by the cell_type field, which
the notebook server knows to translate “code” to mean Python and “markdown” to
mean its particular flavor of markdown (of which there are several).

This points towards a model of recursive cells that can contain other cells. An edi-
tor could, for example, draw from templating engines like liquid, where an abstract
representation of the content of a cell could include a {{ content }} marker that
indicates that additional cells can be included inside of it. Recursive models, cou-
pled with structuring metadata that indicates the relationship between a parent and
child cell could then be used to model compound concepts. Another simple exam-
ple using citation might be to have a cell with one child cell containing a reference to
another work that ours @cito:disagrees_with [485] , and another child cell that
in turn contains some writing in markdown and a plot. Recursive cells also naturally
lend themselves to transclusion by making each of the individual subcomponents
of a document referenceable with full granularity. We will expand on both com-
pound concepts and transclusion in a moment in talking about the extension of
our cellular system to wikis.

Before we go beyond a document system that would be unrecognizable to most sci-
entists, and thus yet another nice pipedream, it’s important to pause on the continu-
ity with existing document systems. Microsoft Word, or Word-like WYSIWYG edi-
tors like LibreOffice or Google docs are the dominant mode of preparing academic
documents. Word-like editors arealready create recursive cell-like documents, though

https://jupyterlab.readthedocs.io/en/stable/api/classes/cells.cellmodel-1.html
https://jupyterlab.readthedocs.io/en/stable/api/classes/cells.codecellmodel-1.html
https://jupyterlab.readthedocs.io/en/stable/api/classes/cells.markdowncellmodel.html
https://jupyterlab.readthedocs.io/en/stable/api/classes/cells.rawcellmodel.html
http://www.bibtex.org/Format/
https://schema.org/ScholarlyArticle
https://schema.org/creativeWorkStatus
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://www.iana.org/assignments/markdown-variants/markdown-variants.xhtml
https://shopify.github.io/liquid/
https://sparontologies.github.io/cito/current/cito.html#d4e449
https://www.libreoffice.org/
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their interface obscures them. They support semantic markup like heading styles
(though their use compared to manual formatting is far from universal [486] ), and
every paragraph can be considered a cell, with the default paragraph styling as its
metadata and additional styled elements like bolded words as sub-cells. It should
then be possible to import existing word documents into a cellular document sys-
tem. Care should also be taken to smooth the cognitive transition from word-like
editors: Jupyter currently treats cells as being strictly separate, and new cells need
to be created manually. Instead it should be possible for cells to “recede into the
background” and be created with common gestures like a double return to make
a new paragraph. The “insert” menu used to create things like tables or images is
already a familiar tool in word-like editors, so the notion of adding elaborated types
like citations shouldn’t be that big of a lift.

The other major document preparation tool modalities are markup syntaxes and
their associated builders like LaTeX. Though TeX-like tools have an exceedingly
opinionated and obscure design history [487] , they have three major affordances: 1)
document-level structure provided by document classes, packages, and the options
they provide, 2) environments that enclose some section of text between \begin{}
and \end{} and provide some specific functionality or formatting like lists, and 3)
commands that accept arguments and modify some smaller unit of text like creating
a link with \href{https://url.com}{link text}. Each of these maps onto a cel-
lular document system, with document-level metadata or the templates commonly
used to render markdown, and cells that take arguments to approximate environ-
ments and commands. Markdown extensions like MyST [488] make this transla-
tion even more straightforward with direct analogies to LaTeX commands and en-
vironments and their “role” and “directive” counterparts in reStructuredText. Since
the goal should be a 1:1 relationship between source code and visual editor, the dif-
ference between representing a cell visually versus in markup should be left as a mat-
ter of author preference.

Bidirectional translation from a WYSIWYG editor to its markup is not a trivial task
— the mediawiki team started writing theirs in 2011 and rolled it out as a default fea-
ture in 2020 [489] . It’s a careful balance between ease of use, power of syntax, and
accomodation of historical usage patterns. Markdown is on one extreme of ease
with only a handful of markup elements to learn, but has a relatively steep learn-
ing curve to do anything more complex. On the other end is the wonderful dokieli
[490] (and see Sarven’s masterpiece [491] , spiritual cousin to this document), which
does essentially everything that we want our linked documents to do, but requires
authors to write their documents in HTML and manually manage the semantic
markup. Extending Notebooks to use recursive cells with reusable types sacrifices
some of the ability to directly edit the source of a document as a potential way to
balance familiarity and expressiveness.

Notebooks, with some architectural and interfaces then become a straightforward
way of breaking up the scientific paper as a singular unit of knowldge work when
embedded in a linked data system. Their use in scholarly publishing has been pro-
posed many times before, but our linking system lets us resolve some of the largest
outstanding limitations [492] : dependency management [493] , archiving [494] ,
and discovery, among others. The same gradient of access control rules we discussed
in controlling access to sensitive data would support a process of gradual publication
of smaller units of work, from a private demo in our lab meeting to a public part of
scientific discourse.

https://www.overleaf.com/learn/latex/Lists
https://myst-parser.readthedocs.io/en/latest/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://www.mediawiki.org/wiki/VisualEditor
https://en.wikipedia.org/wiki/MediaWiki_version_history
https://dokie.li/
https://csarven.ca/linked-research-decentralised-web
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What happens when we invite other people to respond?

Forums & Feeds

What if we think of our documents as “threads” and their cells as “posts?” What
makes a cellular document a document is some (relatively arbitrary) notion of a
‘root’ cell that contains the others — ie. for notebooks a JSON array of cells. That
could be trivially reformulated as cells with metadata indicating that they are PartOf
a document, each indicating their position or linked to the cells they are before
and after. If we also allow cells to be inReplyTo each other, we have the basis of
a threaded communication system continuous with documents. Where cells in a
linear document have at most one preceding and succeeding cell, multiple replies al-
low a tree structure that maps onto the patterns of most contemporary social media.
Metadata that describes category and content extends this to include the structure
of forums, and could be the basis of a rich continuum of media spanning order and
chaos, permanence and ephemerality, between the magnum opus and the shitpost:
media absent but sorely needed in academic communication.

Traditional forums like phpBB and contemporary social media operate from a sin-
gle host with a fixed interface and representation of posts. What would a commu-
nication system that decouples hosting, identity, interface, and format look like?
We can draw inspiration from the “fediverse,” a collection of interoperable software
platforms and protocols. The fediverse makes it possible to communicate across rad-
ically different interfaces: someone using Funkwhale, which resembles music soft-
ware like spotify, can communicate with people on PeerTube, a p2p video stream-
ing program like YouTube, and Mastodon, a microblogging medium like Twitter.
Rather than a single host, instances of each of these programs are hosted indepen-
dently and can choose to federate with other instances to enable communication
between them. Most of these programs use the ActivityPub [408] protocol, which
defines a standard set of capabilities for client-server and server-server communica-
tion.

Mastodon posts (or “toots”) already resemble the kind of document-interoperable
medium hinted at above. For example this post is represented in (abbreviated) JSON:

{
"to":[

"https://www.w3.org/ns/activitystreams#Public"
],
"cc":[

"https://social.coop/users/jonny/followers"
],
"id": "107328829457619549",
"created_at": "2021-11-23T22:52:49.044Z",
"in_reply_to_id": "107328825611826508",
"in_reply_to_account_id": "274647",
"visibility": "public",
"url": "https://social.coop/@jonny/107328829457619549",
"content": "<p>and making a reply to the post to show the in_reply_to and context fields</p>",
"account":

https://schema.org/isPartOf
https://schema.org/position
https://www.w3.org/TR/activitystreams-vocabulary/#dfn-inreplyto
https://www.phpbb.com/
https://en.wikipedia.org/wiki/Fediverse
https://funkwhale.audio/
https://joinpeertube.org/
https://joinmastodon.org/
https://www.w3.org/TR/2018/REC-activitypub-20180123/
https://web.archive.org/web/20220708215201/https://social.coop/@jonny/107328829457619549
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{
"id": "274647",
"username": "jonny",
"fields":
[ ... ]

},
"media_attachments": [],
"mentions": [],
"tags": [],

}

As described previously, ActivityPub supports linked data with JSON-LD – a re-
markable feat despite the justifiable angst with the protocol [495, 281] given the his-
torical grudges between linked data and indieweb communities (See this retrospec-
tive by one of its authors, Christine Lemmer-Webber [275] ). So we could imagine
that post using a reference to a document or one of its cells in its in_reply_to field.

Mastodon might be a good transitional medium, but we can extend it to make use of
our linked p2p system. The fediverse decouples the network from a single platform,
but instances still bundle together the underlying data of a post with an interface,
host, and account (but see hubzilla). p2p helps us decouple accounts from hosts
(see this discussion on a p2p ActivityPub [496] ), but we would also like to decouple
interfaces from the underlying data so that we have a continuous communication
medium where different interfaces are just views on the data. To do that we would
want to start by replacing Mastodon’s flat “content” field with the kind of typed
cells in our documents that indicate what kind of message they are. For example a
simple text-based message might use the ActivityStreams Note type:

{
"@context": "https://www.w3.org/ns/activitystreams",
"type": "Note",
"name": "My Message",
"content": "A note I send to you!"

}

But we might equivalently send a @jupyter:Notebook as a message, or some com-
pound object like a Collection:

{
"@context": "https://www.w3.org/ns/activitystreams",
"summary": "A Compound Message!",
"type": "Collection",
"totalItems": 2,
"items": [

{
"type": "Note",
"name": "Hey how ya doin here's a notebook"

}
{

"@context": "https://jupyter.com/",
"type": "Notebook",

https://hubzilla.org//page/hubzilla/hubzilla-project
https://www.w3.org/TR/activitystreams-vocabulary/#dfn-note
https://www.w3.org/TR/activitystreams-vocabulary/#dfn-collection
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"content": "..."
},

]
}

So the existence of a particular type of message is not bound to the ability of any
given program’s ability to render it. Our notebook program might not be able to
understand what it means to have people responding to and making threads about
its cells, but we would still be able to receive them and open them with an interface
that does, and we could further imagine the ability for a type to recommend a pro-
gram to us for rendering it as we did with the ability for analysis nodes to specify
the code to execute them. We will set aside for a moment the issues of moderation
and permission for which messages can link to our work and the practicalities of
sending, receiving, storing, and serving messages and return to them in the context
of annotations and trackers, respectively.

Where do our posts go? For concreteness, we can start with a forum called “Neu-
roChat.” @neurochat is a peer like any other, and it supports some of the basic
ActivityStreams vocabulary. We can request to join it by sending a @as:Join re-
quest, which gives it permission to index our public posts and issue links on our
behalf through its web interface. It has a few broad categories like “Neuromodu-
lation” and “Sensory Neuroscience,” within which are collections of threads full
of chronologically-sorted posts. Threads are objects that indicates a category like
@neurochat:categories:Neuromod, and when we post in them we create links that
are @as:attributedTo us with the @as:context of the thread we’re posting in and
any @as:inReplyTo links to preceding or quoted posts.

We want to announce and describe some recent results in our document@jonny:my-project:Writeup.
This kind of post is common in @neurochat, and so instead of a generic citation we
use a @neurochat:AnnouncesResult link to indicate the relevant document. In our
forum pseudocode we’ll use a #prefix macro to give a short name to our project
and semantic wikilinks with a [[predicate::object]] syntax for the purpose of
demonstration, though ideally these would be part of the forum’s interface. We
think we really have something that challenges some widely held previous results:

#prefix project @jonny:my-project
#prefix nc @neurochat

Hi everyone, happy to present my new work
[[nc:AnnouncesResult :: project:Writeup]].

I think it raises a number of interesting questions,
in particular @rival's longstanding argument
[[@cito:disputes :: @rival:TheBrainIsInTheLiver]].

I also wonder what this means about the conversation
we've been more generally about
[[@cito:discusses :: @discipline:whereAreTheOrgans]].

Anyway, write back soon, xoxo.

Our rival takes the criticism in stride but wants to run their own analysis. They

https://www.w3.org/TR/activitystreams-vocabulary/#dfn-join
https://www.w3.org/TR/activitystreams-vocabulary/#dfn-attributedto
https://www.w3.org/TR/activitystreams-vocabulary/#dfn-context
https://www.w3.org/TR/activitystreams-vocabulary/#dfn-inreplyto
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follow the links back to find our data, and reanalyze it. Their analysis framework
has already issued a link indicating that it reanalyzes our data, and rather than do an
independent writeup our rival returns to the thread to continue the discussion.

Interesting result, you old scoundrel.

That indeed [[disputes :: @doi:<id>]],
in particular its section [[.:results:main]]
and my re-analysis adds another wrinkle to the problem!
Take a look:

[[nc:embed :: @rival:reanalysis]]

This really complicated another project of mine,
[[@rival:projects:NeuronsCanSwim]]

Our forum’s embed link knows how to embed the notebook our rival used to do
their reanalysis and in the underlying message indicates the the current version so
if they update it in the future the message will still be comprehensible. Our rival
doesn’t use a predicate for their link to their side-project and our forum uses its
default Mentions predicate. It’s still more informative than a duplet link because
the context of being a discussion in our forum the links in the surrounding posts.
We could imagine additional capabilities we give to our forum, like the ability to
automatically trigger a re-analysis by someone mentioning a different pipeline for a
given dataset, but we’ll leave those as an exercise to the reader.

This example is a relatively trivial instance of scientific communication: sharing
results, relating them to previous findings, and thinking about the broader impli-
cations on the field. However in our current regime of scientific communication,
even in the most progressive publication venues that allow communication directly
on a work, this kind of communication is entirely invisible to the broader state of
our understanding. With our system of linked communication, however, the entire
provenance chain from our experiment through its analysis and contextualizing dis-
cussion is related to immediately related work as well as the standing questions in
our field. Our work is enriched by the additional analysis from our rival, and their
work is continuously contextualized as the state of our understanding develops. We
were capable of making incremental refinements to our shared understanding using
units of work that were much smaller than the traditional scientific paper. It would
be possible for someone entirely outside our field to browse through the general
links from basic research questions to relevant work and its surrounding discussion.
If they were to ask questions, our answers would represent the latent diffusion of un-
derstanding to other disciplines based on the graph context of our respective work
— and we could be credited the time we spent doing so! In short, scientific commu-
nication could actually be cumulative.

Forums are just one point in a continuous space of threaded media. If we were to
take forum threads out of their categories, pour them into our water supply, and
drink whatever came our way like a dog drinking out of an algorithmic fire hydrant,
we would have Twitter. Remove the algorithm and arrange them strictly chronolog-
ically and we have Mastodon. In both, the “category” that organizes threads is the
author of the initial post. Algorithmic, rather than purposefully organized threaded
systems have their own sort of tachycardic charm. They are effective at what they
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aim to do, presenting us whatever maximizes the amount of time we spend look-
ing at them in a sort of hallucinatory timeless now of infinite disorganization —
at the expense of desirable features of a communication system like a sense of sta-
ble, autonomously chosen community, perspective on broader conversation, and
cumulative collective memory.

Nevertheless the emergence of a recognizable “Science Twitter” points towards a
need for relatively informal all-to-all communication. Serendipitously being able to
discover unlikely collaborators or ideas is a beautiful dream, if one ill-served by the
for-profit attention economy. Our formulation of the @neurochat forum was as an
equal peer that mirrored, collected, and organized posts that otherwise are issued
from other peers such as ourselves. In the same way that we might use the ActivityS-
treams Join action to have our posts mirrored by it, we might also use @as:Follow
to receive posts from any peer, and in the case of a federation that might include
posts from its members sent to the federation. Notice in the example mastodon
post above how it uses JSON-LD and the activitystreams ontology: a “me to the
world” tweetlike message is addressed to activitystreams#Public and cc’d to the
URL that corresponds symbolically to the list of @jonny’s followers.

We can take advantage of the graph structure and rich metadata of our social net-
work in ways that are impossible in corporate social media networks that require
the expectation of disorder to be able to sell “native” ad placement. The instance-
to-instance federation model of the fediverse, and the accompanying absence of any
“global” scope of all posts, results in the need for multiple views on the network: in
Mastodon, a “local” timeline that shows only posts from within the host instance,
and a “federated” timeline that shows posts from all instances that the host instance
has federated with. Since our network allows peer-to-peer, federation-to-federation,
and peer-to-federation interaction, we can extend that further. We can construct
views of the network based on granular control over graph depth: instead of seeing
just the posts from the peers that we follow, we can request to see n-depth posts,
from the peers that our peers follow, and so on. This could be done at the level of
a “view” or at the level of the follow link itself — since I know this person well,
I want to see a graph depth of 2 from them, and a depth of 1 from others. At
the federation level, we might imagine that @neurochat is federated with another
@linguisticsChat group and the two mirror and rehost each other’s posts. We
could then make use of our extended social graph and prioritize posts from people
who are part of overlapping subsets of the federations we are a part of. The peer-
based nature of our social network serves as the basis for a system of fluid scoping
and filtering of the kind of communication we are looking for at any given time. So
rather than a disorganized public melee or the empty rooms and new logins from
yet another closed Slack, our communication could be part of a coherent scientific
conversation.

Across from filtering what we receive, the same could be done to what we send by
choosing where our posts are addressed and who can see them. The same multi-
modality of “following” used to indicate the graph depth of the posts we see could
let us indicate different kinds of relationships. We should be able to send global,
undirected messages on a public feed, but we don’t necessarily want to talk to our
friends in the same way that we talk to strictly professional colleagues. We might
want to organize privately with a few colleagues, or prevent trolls or hostile groups
from accessing or making use of our work. Effectively, we should be able to direct
our messages to different groups of peers to support the multiple registers of our

https://www.w3.org/TR/activitystreams-vocabulary/#dfn-follow
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communication.

The need for rapid and informal scientific communication being mediated by cor-
porate social networks has the unfortunate byproduct of needing to carefully man-
age a “personal brand.” To be seen as a “serious,” we need to maintain some prox-
imity to the stilted academic voice, forfeiting any approachability to science that
might be gained from public communication. If we are to expand the scope of
what we consider as the labor of scientific communication, we should also take se-
riously its many registers and contexts. Informal media like alt accounts, mailing
lists, groupchats, zines, and whisper networks are also an integral part of science,
particularly for marginalized and vulnerable scientists [497] . Parallel to organizing
our communication in empirical professional communication, we might build sys-
tems that support our organization into federations to more effectively bargain over
our working conditions and protect ourselves. The venues that organize our com-
munication being limited to journals, and the accompanying regulation over the
registers of communication that count as “real” science, is even more limiting than
its profound effects on scientific literature proper. The absence of infrastructure
to support the multiregister communication of science limits our ability to orga-
nize over the broader state of our work, form extended communities, and reduces
what should be the collective project of making our work broadly understandable
to the individualistic projects of “scicomm influencers.” It shouldn’t take a lot of
additional critical analysis to say “shitposts are good, actually, for science.”

There’s a balance to be struck between a system of granular control over the messages
we send and receive with the ease of a monolithic algorithmic feed. Mastodon sorts
all posts purely chronologically, which translates into relatively steep limits on the
size of communities as feeds become unintelligible washes of posts. Instead of for-
going algorithmic organization altogether, another means by which we could take
advantage of the graph structure of our network is by being able to choose the sorting
algorithms we use. We might want to prioritize posts from someone who we don’t
necessarily follow but is interacting with people that we do in contexts that we share,
or be able to deprioritize posts that are “close” to us in our social graph in order to dis-
cover new things. This too could be a cumulative, community-driven project, where
we might want to try out our friend’s @friends:sorting:NewAlgorithm, tweak it
a bit for our preferences, and republish a new version.

Generally, the impact of having a communication system that decouples hosting,
identity, interface, and format on an underlying linked data graph gives us a broad
space to build different views and tools to use the underlying data. Specifically, with-
out predicting the infinite future of communication media, our system of linked,
cell-like communication generalizes threadlike media like forums and feeds into a
continuous system that can blend their features as needed. Durable, cumulative dis-
cussion about the state of our understanding should be able to live side-by-side with
ephemeral, informal conversations. It should be possible for us to serendipitously
discover people and information as well as for a newcomer to have a place to ask
questions and build their understanding. It should be possible for us to form and
dissolve communities fluidly without substantial technical start-up costs and the
total loss of memory when they close. A system that supports the fullness of con-
tinuous communication would be an unfathomably richer way of building reliable,
accessible, and multivalent understanding of our reality than the current system of
a gladitorial thumbs up/down indictment on years of your life that is journal-based
peer review.
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Overlays & Adversarial Interoperability

We can’t expect the entire practice of academic publishing to transition to cell-based
text editors in a p2p linked data swarm overnight. In the same way that we dis-
cussed frameworks for integrating heterogeneous analytical and experimental tools,
we need some means of bridging communication tools and overlays for interact-
ing with existing communication formats. There are many examples of bridging
communication protocols, eg. the many ways to use Matrix with Slack, email, Sig-
nal, etc. The overlays for websites, pdfs, and other more static media that we’ll dis-
cuss are means to bring them into the system whether they support it or not: our
interoperability should be willing to be adversarial if it needs to be [498, 499] . In
representing the intrinsically interactive and social nature of reading (eg. see [500]
), overlays as interfaces also supplement the “horizontal” connections between cells
by injecting information into them or transcluding it elsewhere: creating a fuzzy
boundary between writing on something vs about something.

We don’t need to look far to find a well-trod interface for annotation overlays for
document-like media: the humble highlighter. Hypothes.is, enabled on this page,
lets readers highlight and annotate any webpage with a browser extension or javascript
bookmarklet. This interface is a near match to the highlighting and review tools of
Microsoft Word and Google Docs used for the same purpose. At its heart is a sys-
tem for making anchors, references to specific places in a text, and the means of
matching them even when the text changes or the reference is ambiguous [501] .
For example, this anchor has three features, a RangeSelector that anchors it given
the position within the paragraph, an absolute TextPositionSelector, and a con-
textual TextQuoteSelector that you can see with an API call. Anchors like these,
along with references to the code that resolves them, could be the objects to which
we could link from the rest of our communication system.

On its own, it serves to give a Talk: page to every website. With an integration into
a system of linked data and identity, it also serves as a means of extending the notion
of bidirectional transclusion described above to work that is not explicitly formatted
for it. Most scientific work is represented as .pdfs rather than .html pages, and hy-
pothes.is already supports annotating PDFs. With an integration into pdf reading
software, for example Zotero’s PDF reader, there would be a relatively low barrier
to integrating collaborative annotation into existing workflows and practices.

Digital publishing makes imagining the social regulation of science as a much more
broadly based and continuous process much easier, but the problem of modera-
tion remains (as it has since at least the coiner of the terms “Gold” and “Green”
open access lost faith in ahierarchical scientific communication after someone said
poo-poo words at him on Internet while defending the use of they/them as gender-
ambiguous pronouns [502, 503, 504] ). Some movement has been made towards
public peer review: eLife has integrated hypothes.is since 2016 [505] , and bioRxiv
had decided to integrate it as well in 2017 [506] before getting cold feet about the
genuinely hard problem of moderation (among others [507] ) and instead adopting
the more publisher-friendly TRiP system of refereed peer-reviews [508] .

Overlays raise basic questions about control over the representation of our work,
about who is able to write what on it. As with potential incompatibility between
interfaces, we should be able to control what comments appear on our work, but
there is no way to control – even in our current communication systems – what
someone says about it. Our system gives us some ability to identify bad actors and

https://matrix.org/bridges/
https://matrix.org/bridges/#slack
https://matrix.org/bridges/#email
https://matrix.org/bridges/#signal
https://matrix.org/bridges/#signal
https://hypothes.is
https://chrome.google.com/webstore/detail/hypothesis-web-pdf-annota/bjfhmglciegochdpefhhlphglcehbmek
https://hypothes.is/a/oLw4uk7_Eeyt5N-FVlE3fw
https://api.hypothes.is/api/annotations/oLw4uk7_Eeyt5N-FVlE3fw
https://github.com/hypothesis/client/blob/fb08cdf38191643d7a35d84ca3b822589c2e880a/src/annotator/anchoring/types.js
https://web.hypothes.is/help/annotating-locally-saved-pdfs/
https://www.zotero.org/support/pdf_reader_preview
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regulate the avenues of communication without overcorrecting into a system where
criticism becomes impossible – even if we don’t want to represent someone’s com-
ments on our work, it is possible to make them and for others to find them, but it’s
also possible to contextualize their context if they’re made in bad faith.

Though a description of the norms and tools needed to maintain healthy public an-
notation is impossible here, our system provides a space for having that conversation.
Authors could, for example, allow the display of annotations from a professional so-
ciety like @sfn that has a code of conduct and moderation team, or annotations asso-
ciated with comments on @pubpeer, or from a looser organization of colleagues and
other @neurofriends. Conversely, being able to make annotations and comments
from different federations gives us a rough proxy to different registers of communi-
cation and preserves the plurality of our expression. Social tools like these are in the
hypothes.is team’s development roadmap, but I intend it as a well-developed and
mature example of a general type of technology59 rather than a recommendation. 59 cf. the genius.com overlay.

In addition to annotating other works, overlays can come in the form of bots or
other tools for interacting with existing systems in a way that’s compatible with a
new one. One particularly impressive example of aggressive interoperability in this
domain is Eduardo “flancian” Ivanec’s agora [509, 510] . An agora is a wiki-like
project with pages (or nodes) for each named concept, but it also allows for multi-
ple representations of a given node: so notes from multiple people across multiple
mediums will be present on the same page. Accompanying the agora is the anagora
bot (on Mastodon and Twitter), which makes links to, and backlinks from pages
mentioned as [[wikilinks]] by accounts that follow them (for example: a post,
the bot’s reply, and one of the linked pages, [[wikilinks everywhere]]). This
becomes natural quickly: it’s common for people associated with the agora (or flan-
cians) to speak with wikilinks, or index links and conversations that they come across
for mutual discovery.

The agora makes linked annotation a basic part of using the web without requiring
fundamental changes in communication practices. The agora is an exercise in radi-
cally permissive protocol-like thinking: rather than creating a new app or platform,
theoretically any bot could be made to crawl different mediums for wikilinks and
index them. It illustrates that interfaces can precede formal protocols and serve as a
testing and development ground for them.

Another bridging overlay for more author-focused scientific communication would
be to explicitly archive the threads that increasingly serve as companions to pub-
lished work — or original works of scholarship on their own (eg. [511] ). I have
started experimenting with this with the @threadodo_bot, a bot that converts a
thread to a PDF60 and uploads it to Zenodo when it is tagged beneath one. This bot 60 complete with markdown rendering!
is being programmed as a generalizable framework for bots that can accept param-
eterized commands. For example, someone can set their authorship information
by tweeting “identify” at threadodo, which accepts a series of key-value pairs to set
your name, affiliation, and orcid. Future versions will support automatic reference
generation for linked works, including previously archived threads, as well as setting
prefixes for OWL schema for use in semantic [[predicate::object]] wikilinks.

When some recognizably different communication medium begins to coalesce, it
should support bidirectional crossposting to and from existing mediums. Crosspost-
ing substantially eases transition — for example between Twitter and Mastodon —
as patterns of usage that have been trained for years on hyperoptimized attention-

https://web.archive.org/web/20211015213849/https://github.com/hypothesis/product-backlog/projects/6
https://genius.com
https://flancia.org/
https://anagora.org/
https://anagora.org/wiki-like
https://botsin.space/@agora
https://twitter.com/an_agora
https://social.coop/@jonny/108621001205679783
https://botsin.space/@agora/108621001318792297
https://anagora.org/Wikilinks+Everywhere
https://flancia.org/manifesto/
https://flancia.org/manifesto/
https://twitter.com/threadodo_bot
https://github.com/sneakers-the-rat/threadodo/blob/58d5f13f88728babdf2da0b34310c88349725566/threadodo/actions/commands.py#L145-L168
https://twitter.com/json_dirs/status/1542305909983936512
https://crossposter.masto.donte.com.br/
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capturing platforms are hard to break. Together with bridges, bots, and overlays for
annotation, linking, and archiving, the dream of rewriting the norms of academic
communication looks less like some “if you build it they will come” pipe dream and
more like a transitional period of demonstrating what we can dream of together. Ad-
versarial interoperability not only works [499] , it’s also a gift of the hacker mindset
that teaches us how to make building a better world an act of unrepentant joy.

Trackers, Clients, & Wikis

The final set of social interfaces are those for collective governance of the system. So
far we have generalized documents “vertically” into recursive typed cells, “horizon-
tally” into linked cells for communication, and then blurred their independence by
and extended them into incompatible media with overlays. The remaining piece we
need are multi-authored documents: wikis. We’ll pick up the threads left hanging
from our description of bittorrent trackers and knit them in with those from the
wiki way to describe how systems for surfacing procedural and technical knowledge
work can also serve as a basis of searching, indexing, and governing the rest of the
system. Where the rest of our interfaces were means of creating particular kinds of
structured links, we’ll also describe wikis as a means of interacting directly with links
to negotiate the relationships between the multiplicity of our folksonomic schema.
In the process we’ll give some structure to the clients and trackers that serve and
organize them.

Our notion of recursive cell-like documents is already a good basis for wiki pages.
Multi-author documents should already be possible with a permission system that
we have invoked previously to limit read access, and so the most radically open, pub-
licly editable wikis would just have edit permissions open to anyone. The version
history that makes the notion of SoftSecurity possible should also be a general prop-
erty of links in our system. The other concept we’ll borrow from traditional wikis
is the model where pages represent topics. Practically, let’s suppose this means
that within documents beneath some namespace like @jonny:wiki, we can make
wikilinks to [[New Pages]] that imply links to @jonny:wiki:New_Pages — though
for the sake of simplicity in this section we will assume that our wiki starts at the
root of the @jonny namespace.

We want to preserve two types of multiplicity: the multiplicity of representations
(as in Talk: pages) and instances of a given topic, or the ability for multiple peers to
have linked versions that potentially transclude content from other peers, but are ul-
timately independent. Both can use different components of a namespace: for mul-
tiplicity of representation we might follow the example of mediawiki and use parallel
namespaces like @jonny:talk, and multiplicity of instances follows naturally from
parallel peers by linking @jonny:wiki:My_Page to @rumbly:wiki:My_Page.

Wikis that represent multiple instances of a given page are already a subject of active
experimentation. Flancian’s Agora is one example, which is based on markdown
files in git repositories, and markdown files with the same name in federated reposi-
tories are presented on the same page. A much older project61, everything2 is built 61 everything2 (or e2) users tend to be, uh, floridly

sarcastic, and so its history is not as clearly laid out
as the other old wikilike sites.

around multiple “writeups” for a given “node.” Multiple instances of a page are also
a defining feature of Ward Cunningham’s federated wiki, which has a vertical “strip”
based interface where clicking the colored squares at the bottom of a given page will
open another strip to show another user’s instance of the page. We’ll borrow Ward’s
terminology and refer to this kind of wiki as a federated wiki.

https://www.gwern.net/Unseeing
http://meatballwiki.org/wiki/SoftSecurity
https://everything2.com/
https://everything2.com/title/Everything%253A+In+the+Beginning
https://everything2.com/title/Everything%253A+In+the+Beginning
https://everything2.com/title/Writeup
https://everything2.com/title/Node
http://ward.fed.wiki.org/view/welcome-visitors/view/home-in-the-federation
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Federated wikis already have some broader purchase as “personal knowledge graphs,”
[512] where people use tools like Notion or Obsidian to keep a set of linked, semistruc-
tured personal notes. Rather than thinking of a wiki as wikipedia, with pages that
aspire to be uniformly named and written, personal knowledge graphs take what-
ever form is useful to the person maintaining them. This maps neatly onto our
namespaces and recursive documents as a means of organizing our system of links.

Say we have a very simple project structure that consists of a dataset with two tables
and a document with the date of the experiment and some short description of the
data. In our pseudocode:

<#project>
a @jonny:Project

dataset
@format:csv

table1
table2

document
a @jupyter:notebook

@schema:Date dateCollected
Description

"This is the data that I collected"

This has a natural representation in our wiki as a set of nested cells: the@jonny:project
page has two child cells, one for the dataset and one for the document, which have
their own child cells that represent the tables, date, and description according to
their types. Since the relationships between our cells can also typed, ie. have an as-
sociated predicate like before, after, or inReplyTo, we’ll use two additional types
to differentiate nested cells:

• child (and its inverse parent) cells correspond to a cell’s position in our names-
pace, so we could find our data at @jonny:project:dataset.

• transcludes (and its inverse transcluded) indicates some other cell that we rep-
resent on a given wiki page, as we might want to do if we wanted to embed one
of our plots in a post.

• And other cells linked with bare [[wikilinks]] are untyped.

This gives us a bidirectional representation of our link structure: and with it an
interface for browsing and managing all the various types of objects that we have
described so far.

Since schemas, or abstract representations of the links a type might have, are them-
selves made of links, these too can be managed with a wiki. Semantic mediawiki
and its page schemas extension implement a system like this. For example, the Au-
topilot wiki has a form to submit build guides for experimental apparatuses. Build
guides have a schema and an associated template that lays out the form input on the
created page and makes the semantic wikilinks that declare its properties like [[Is
Version::2]].

https://www.notion.so/
https://obsidian.md/
https://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki
https://www.mediawiki.org/wiki/Extension:Page_Schemas
https://wiki.auto-pi-lot.com
https://wiki.auto-pi-lot.com
https://wiki.auto-pi-lot.com/index.php/Form:Build_Guide
https://wiki.auto-pi-lot.com/index.php/Category:Construction_Build_Guide
https://wiki.auto-pi-lot.com/index.php/Template:Build_Guide
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This system is semantically rich while also being flexible, as everything reduces down
to semantic wikilinks on a page, so free text can be used fluidly along with structured
schemas, forms, and templates. The wide open structuring space of the wiki han-
dles the messy iteration of technical knowledge work well while also having enough
structure to be computer readable. A page for an amplifier makes the datasheet,
serial protocol, and the GPIO pins it needs available via an API call while also car-
rying on a continuous effort to crudely defeat its low-pass output filter. A plugin
page can credit the papers it was used in by DOI and the python packages needed to
run it while also describing how to void the warranty of your oscilloscope to unlock
additional functionality.

The page-centric model of semantic wikis poses a problem, though. The guide for
building the Autopilot Behavior Box has semantic annotations describing the CAD
schematics, materials, and tools that it uses. This works fine for other assembled
parts or schematics like 3d printed parts that have pages of their own, because their
pages can contain the additional properties that describes them like the associated
.stl files. Materials like screws are trickier. Each screw varies along about a dozen
dimensions, and so that either requires making a separate page for each individual
screw or use workarounds62 that reduce the maximum depth of representation to 62 like subobjects or record types
two layers and add other nasty complexities.

A recursive cellular system avoids these problems and provides a uniform interface
to complex representations. We can create schema for experiments that allow for
a build guide, which can contain assembled component descriptions, which can
contain materials, etc. When using that schema to describe a new experiment, the
researcher can be prompted for any of the possible available fields in the recursive
model while also allowing for free space to write in the semi-structure of the building
blocks. Extending an existing schema is just a matter of transcluding it and then
modifying it as needed. With the ability for our interface to assign fixed IDs for these
objects or generate unique hashes based on their contents, the tension of ephemeral
object declaration with unique addresses disappears.

The tension of arbitrarily flexible personal knowledge graphs with multiscale orga-
nization with other peers remains, though. Approaching from the other side of dis-
covery, rather than declaration of information leads back to considering the struc-
ture of our p2p client and tracker-like systems. The most immediate problem we
face is the need to reconcile the differences between multiple instantiations of over-
lapping representations of concepts that change through time. That sounds a lot
like version control system, and a VCS like git or mercurial should be a natural part
of our client. Where IPFS is “a single bittorrent swarm, exchanging objects within
one Git repository,” [313] we make a mild modification and think of a single bit-
torrent swarm with a git repository per peer (also see IPLD [513] ). Git stores files
as content-addressed “blobs” of binary indexed by “trees” that represent the file hi-
erarchy [514] . Our client can do something similar, except using the triplet link
structure for trees rather than typical duplet links. Another peer querying our data
would then resolve our identity to the top of the tree, our client would then either
serve the parts of our tree that the peer has access to or else let them traverse some
subsection of it, and they could then request any file “blobs” that the tree points
to63. 63 That’s sufficient detail for a sketch, but there is

of course a great deal of subtlety that would need
to be resolved in an implementation. For example,
see [515, 516] .

By itself this would have a lot of overhead as a large number of peers would need to be
queried to find a particular subset of matching metadata. We can mediate that in a
few ways. First, our clients could take advantage of the embedded social network to

https://wiki.auto-pi-lot.com/index.php/HiFiBerry_Amp2
https://www.semantic-mediawiki.org/wiki/Help:API
https://wiki.auto-pi-lot.com/index.php/Plugin:Autopilot_Paper
https://wiki.auto-pi-lot.com/index.php/Autopilot_Behavior_Box
https://wiki.auto-pi-lot.com/index.php/Autopilot_Tripoke
https://wiki.auto-pi-lot.com/index.php/Autopilot_Tripoke
https://wiki.auto-pi-lot.com/index.php/Autopilot_Nosepoke_Cap
https://www.semantic-mediawiki.org/wiki/Subobject
https://www.semantic-mediawiki.org/wiki/Help:Type_Record
https://ipld.io/docs/
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://en.wikipedia.org/wiki/Content-addressable_storage
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cache and rehost other peer’s trees — either in their entirety or as shards distributed
among other peers — depending on our relationship to them. Second, when mak-
ing links, we could notify relevant and subscribed peers that we have made it (eg. see
[517] ). Combined with distributed caching, that would allow the peer responsible
for the schema to direct queries to peers already known to have a particular kind of
file: eg. the @nwb peer could track when @nwb datasets are declared.

We don’t necessarily want to have an entirely autonomous protocol though, follow-
ing the example of wikis and bittorrent trackers we want social systems for shared
governance and maintenance of the system. Trackers first serve the technical need
of indexing a particular community’s data, eg. as @dandihub does with @nwb, in case
peers go offline. We don’t want to just track datasets, however, we want to track
the many different kinds of metadata in our swarm. The second role of trackers is
collective curation and negotiation over schema.

Say a group of my colleagues and I organize to set up a server as our tracker. As an in-
terface, our tracker might allow us to browse schemas as a tree. For a given node, we
might see “horizontally” across all the schemas that have modifications or extensions
to that node, and “vertically” up and down their parent and children nodes. We no-
tice that our colleague has made an extension to a schema that looks very similar to
ours. We do a diff to see which nodes are similar and which are different between
our schema. Both of us have some good ideas that the other doesn’t have, so we
open a conversation thread by creating a node that references both of our schemas
as candidates for merging and send it to our colleague. We negotiate over a way to
resolve their differences, similar to a pull request, and then merge them. Part of our
merging process is indicating how to change either of our existing structures to be-
come the third merged structure, so our clients are able to handle those changes for
us and the update propagates through the network.

As our tracker grows and maybe even becomes the de-facto tracker for our subdisci-
pline, things start becoming a bit messier. Aside from the “tree” view for browsing
metadata, we’ve built views that help it function as a forum for threaded conversa-
tions and a wiki for organization, tracking projects, and setting policies. The durable
but plastic nature of wikis is exceptionally well suited for this. From Butler, Joyce,
and Pike (emphasis mine):

Providing tools and infrastructure mechanisms that support the development
and management of policies is an important part of creating social computing
systems that work. […]

When organizations invest in [collaborative] technologies, […] their first step is
often to put in place a collection of policies and guidelines regarding their use.
However, less attention is given to the policies and guidelines created by
the groups that use these systems which are often left to “emerge” sponta-
neously. The examples and concepts described in this paper highlight the com-
plexity of rule formation and suggest that support should be provided to help
collaborating groups create and maintain effective rulespaces.

[…] The true power of wikis lies in the fact that they are a platform
that provides affordances which allow for a wide variety of rich, multi-
faceted organizational structures. Rather than assuming that rules, policies,
and guidelines are operating in only one fashion, wikis allow for, and in fact facili-
tate, the creation of policies and procedures that serve a wide variety of functions

https://hub.dandiarchive.org
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
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Don’t LookNow, ButWe’ve Created a Bureaucracy: TheNature andRoles of Poli-
cies and Rules inWikipedia (2008) [518]

So we might have a set of policies that encourages a reporting system to notify other
peers if their data is misformatted. Or we might reward contribution with a “peer
of the week” award that highlights their work like What.cd’s album of the week or
Wikipedia’s barnstars [519] . We might adopt a cooperative model where each peer
pays their share of the server fees, or has to take shifts on moderation and cleanup
duty for the week. Each tracker can adopt different policies to reflect their commu-
nities.

Trackers-as-wikis don’t have to exist in isolation. Trackers for adjacent disciplines or
purposes should be able to federate together to transclude pages: organizing multi-
ple perspectives on the same topic, or supplementing each other into a broader base
of knowledge.

What if consensus fails? Our system attempts to mitigate the potential damage of
tyrannical moderators by making it extremely easy to fork. Since every link in the
system “belong” to someone underneath a @namespace, links and the schemas they
build are always a proposition: “something someone said that I don’t necessarily
have to agree with.” If another peer doesn’t like the merge that we did, they can fork
the previous version and continue using it — for other peers the link to the merged
version lets them translate between them. If we want to jump ship and go find a
different tracker that better reflects our values, all our data, including relationships
to the people that we liked there, guides we wrote on the wiki, etc. are still our own.
The tracker just tracks, it isn’t a platform.

Our joint tracker-wikis have many applications for scientific communication, and
it’s worth exploring a few.

10.4.3 Applications

Continuing the example of the Autopilot wiki, we could make an array of techni-
cal knowledge wikis. Wikis organized around individual projects could federate
together to share information, and broader wikis could organize the state of our art
which currently exists hollowed out in supplemental methods sections. The endless
stream of posts asking around for whoever knows how to do some technique that
should be basic knowledge for a given discipline illustrate the need. Across disci-
plines, we are drenched in widely-used instrumentation and techniques without co-
herent means of discussing how we use them. Organizing the technical knowledge
that is mostly hard-won by early career researchers without robust training mecha-
nisms would dramatically change their experience in science, whittling away at in-
equities in access to expertise. Their use only multiplies with tools that are capable
of using the semantically organized information to design interface or simplify their
operation as described in experimental frameworks.

Technical wikis could change the character of technical work. By giving a venue for
technical workers to describe their work, they would be welcomed into and broaden
the base of credit currently reserved only for paper authors. Even without active
contribution, they would be a way of describing the unseen iceberg of labor that
science rests on. Institutional affiliations are currently just badges of prestige, but
they could also represent the dependence of scientific output on the workers of that

https://en.wikipedia.org/wiki/Wikipedia:Barnstars
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institution. If I do animal research at a university, and someone has linked to the
people responsible for maintaining the animal facility, then they should be linked
to all of my work. Making technical knowledge broadly available might also be a
means of inverting the patronizing approach to “crowdsourcing” “citizen science”
by putting it directly in the hands of nonscientists, rather than at the whim of some
gamified platform (see [520] ).

Technical wikis blend smoothly into methods wikis for cataloguing best practices
in experimental design and analysis. It is a damning indictment of our systems of
training or review (or, more likely, both) that it is possible to publish a paper based
on badly misused t-tests, yet the scientific literature is flooded with analytical and
interpretive errors [521, 522, 523] . Analytical errors are not just a matter of lack
of education, but also a complex network of incentives and disciplinary subcultures.
Having the ability to discuss and contextualize different analytical methods elevates
all the exasperated methods critiques and exhortations to “not use this technique
that renders meaningless results” into something structurally expressed in the prac-
tice of science. See the @methodswiki page that summarizes this general category of
techniques and the discussion surrounding their application in the relevant body
of research. For implementation of analytical libraries, to move beyond fragile code
reduplicated in every lab we need some means of reaching fluid consensus on a set of
quasi-canonical implementations of fundamental analysis operations. Given a sys-
tem where analysis chains are linked to the data they are used with, that consensus
might come by negotiating over a semantically dense map of the analysis paths used
in a research domain.

Analysis wikis would also be a natural means of organizing the previously men-
tioned Folding@Home-style distributed computing grids. Groups of researchers
could organize computational resources and govern and document their use. For
example, a tracker could implement a “compute ratio” where donated computing
resources function as credit for “bounties.” Analogously to private torrent trackers,
where a bounty system might allow peers to trade their excess upload in exchange
for someone uploading a rare album, linked tracker/wikis could translate that model
to one where someone who has donated a lot of excess compute time could trade
it for someone uploading or collecting a particular dataset. Since the kind of wikis
we are describing combine free text with computer-readable data structures, poli-
cies for use could be directly implemented in the wiki in the same place they were
discussed. This too is a means of collectivizing support for open-source initiatives
that support basic infrastructure by donation and the mercy of cloud providers by
integrating them in the basic social practices of science [488] .

Review wikis could replace journals almost as an afterthought. Though an ade-
quate infrastructure of scientific communication immediately antiquates traditional
peer review, review wikis could facilitate it without recourse to an extractive infor-
mation industry. In response to the almost unique profitability of publishing, some
researchers have reacted, perhaps justifiably, by demanding payment for their re-
views (eg. [524] ). An alternative might be to organize review ourselves. Like the
ratio requirements of private bittorrent trackers, we might establish a review ratio
system, where for every review your work receives you need to review n other works.
This would effectively function as a reviewer co-op that can make the implicit la-
bor of reviewing explicit, and tie the reviews required for frequent publication with
explicit norms around reciprocal reviewing.

Library wikis focused on curation, contextualization, and organization of infor-
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mation could be one modality of resisting the neoliberal drive to reduce librarians
to stewards of subscriptions and surveillance data [228, 525] . Knowledge organi-
zation is hard practical and theoretical work, and reimagining the space of scientific
communication as one that we actively create instead of one that we merely suffer
through is a wide-open invitation for the comradeship and leadership of librarians.
Linked data has been a mixed blessing for librarians, its promise obscured by intel-
lectual property oligopolies and the complexity of linked data standards (see [393]
). Given fresh tooling and a path away from structuring influence of for-profit pub-
lishers, the rest of us should be prepared to learn from those that have already been
doing the work of curating our archives:

[M]ake it easy to rely on linked data, easier than it is to rely on MARC, and the li-
brary world will shift, from the smallest and poorest libraries upward… and David
will at last stone Goliath to death with his linked-data slingshot.

Stoning Goliath (2022) The Library Loon [393]

Finally, theory wikis could “close the theoretical-experimental loop” to turn the
buckshot of results into cumulative understanding of complex phenomena. In many
(or maybe just the non-realist) scientific epistemologies, results do not directly re-
flect some truth about reality, but instead are embedded in a system of meaning
through a process of active interpretation (eg. [526, 527] ). The model of ground-
ing new research in existing understanding given by contemporary regimes of scien-
tific communication is for each paper to synthesize and re-interpret the entire body
of relevant prior research (formally, the “introduction”), which is bluntly impossi-
ble. We do the best we can alongside strong countervailing incentives to selectively
engage with work in order to tell a publishable story in which we are the hero. Since
the space of argumentation is built from scratch each time, cumulative progress on
a shared set of theories is more of a myth for undergraduate introductions to the
scientific method than a reality. Most fall far from the supposed ideal of hard refu-
tation and can have long lives as “zombie theories.” van Rooij and Baggio describe
the “collecting seashells” approach of gathering many results and leaving the theory
for later with an analogy:

“In a sense, trying to build theories on collections of effects is much like trying
to write novels by collecting sentences from randomly generated letter strings.
Indeed, each novel ultimately consists of strings of letters, and theories should
ultimately be compatible with effects. Still, the majority of the (infinitely possi-
ble) effects are irrelevant for the aims of theory building, just as the majority of
(infinitely possible) sentences are irrelevant for writing a novel.” [528]

They and others (eg. [529] ) have argued for an iterative process of experiments
informed by theory and modeling that confirm or constrain future models. Their
articulation of the need for multiple registers of formality and rigidity is particularly
resonant here. van Rooij and Baggio again, emphasis mine:

We should interpret any data in the context of our larger “web of beliefs,”
which may contain anything we know or believe about the world, including sci-
entific or commonsense knowledge. One does not posit a function f in a vacuum.
[…] One can either cast the net wide to capture intuitive phenomena and refine
and formalize the idea in a well-defined f or, alternatively, make a first guess and
then adjust it gradually on the basis of the constraints that one later imposes: The

https://gavialib.com/2022/06/stoning-goliath/
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first sketch of an f need not be the final one; what matters is how the initial f is
constrained and refined and how the rectification process can actually drive the
theory forward. Theory building is a creative process involving a dialec-
tic of divergent and convergent thinking, informal and formal thinking.
[528]

Durable but plastic, referential and dialogic, structured and free mediums like our
wiki-trackers could be a practical means of integrating theory in a loop with experi-
mentation and interpretation. Many theories are formalizable, and our linked data
system is a relatively arbitrary means of expressing complex constraints and infer-
ence logics. Others are not, and our mixed-format media also supports the dialectic
of informal and formal, mathematized and non-mathemetized theories.

In the most optimistic case, where we have a full provenance chain from interpre-
tation of analytical results back through the viscera of their acquisition, we have a
living means of formally evaluating the empirical contingencies that serve as the evi-
dence for scientific theories. For a given theory, what kinds of evidence exist? As the
state of the art in analytical tooling changes, how are the interpretations of prior re-
sults changed by different analyses? How do different experimental methodologies
influence the form of our theories?

The points of conflicting evidence and unevaluated predictions of theory are then
a means of distributed coordination of future experiments: guided by a distributed
body of evidence and interpretation, rather than the number of papers individual re-
searchers are able to hold in mind, what are the most informative experiments to do?
This would be a fundamentally different way of approaching a new “unit” of scien-
tific work that dissolves the scientific paper as such. Many calls for smaller units of
scientific work amount to faster turnaround for shorter papers that preserve the uni-
tary binding of an experiment, results, and interpretation. Instead new experiments
could start inmedias res, filling in some cracks in an ongoing experimental/interpre-
tational network. A new node could be contributed already contextualized by the
“introduction” of its position in a broader graph of understanding, its interpreta-
tion posed against a broader background of prior thought than the immediate data
at hand. Given the means of directly applying accumulated technical knowledge, it
would be possible for more than just the most resourced labs to be responsive to the
nicks and burrs in the cutting edge.

The pessimistic case where we only have scientific papers in their current form to
evaluate is not that much worse — it requires the normal reading and evaluation
of experimental results of a review paper, but the process of annotating the paper
to describe its experimental and analytical methods as a shared body of links makes
that work cumulative. Even more pessimistic, where for some reason we aren’t able
to formulate theories even as rough schematics but just link experimental results
to rough topic domains is still vastly better than the current state of proprietary
disorganization in service of a surveillance-backed analytics industry.

A meta-organization of experimental results would change the way researchers and
non-researchers alike interact with academic literature. It currently takes many years
of implicit knowledge to understand any scientific subfield: finding canonical pa-
pers, knowing which researchers to follow, which keywords to search in table of
contents alerts. Being able to locate a question in a continuous space of discussion,
data, results, and theories — to say nothing of building a world without paywalls —
would profoundly lower barriers to access to primary scientific knowledge for every-
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one. We might avoid the efforts to weaponize this gap into an ostensibly “helpful”
algorithmic search platform that re-entrenches the very industries that make such
a platform necessary by constraining the modes of our communication. We might
instead arrive at a fluid, boisterous, collective project of explicitly organizing under-
standing. One sounds like science, the other sounds like industry capture.

10.4.4 Credit Assignment

I also think one of the big obstacles to freeing up scientific information remains
the way in which we continue to pay allegiance to the idea that the most impor-
tant work is published in so-called ‘high-impact’ journals […]. These journals con-
tinue to thrive, despite a kind of anti-social policy, because so many academic
scientists evaluate each other’s work andmeasure abilities and accomplish-
ments based on where people have published.

The only way by which we’ll eventually get out of the current situation
is by changing the formula dramatically. That means that we’ll probably
have to move to a world where the authors have full control – their work will
be presented online together with expert reviews and perhaps accompanied by a
new evaluation system in which members of the scientific community will pro-
vide qualitative and perhaps quantitative measures of the value of the paper. The
current world of high- and low-impact journals will eventually dissolve, it’s just
taking a lot longer than I thought.

Harold Varmus, former director of the NIH (2019) Of Oncogenes and Open Sci-
ence [530]

The reason we are (once again) having a fight about whether the producers of
publicly available/published data should be authors on any work using said data
is that we have a completely dysfunctional system for crediting the generation
of useful data. [531] The same is true for people who generate useful reagents,
resources and software. [532] And like everything, the real answer lies on how
we assess candidates for jobs, grants, etc… So long as people treat authorship
as the most/only valuable currency, this debate will fester. But it’s in our
power to change it. [533]

Michael Eisen, EIC eLife (2021)

The critical anchor for changes to the scientific infrastructure is the system of pro-
fessional incentives that structure it. As long as the only way we operationalize sci-
entific value is paper authorship and the prestige of the journals they are placed in,
the system stays: Blog posts, software, analysis pipelines, wikis, forums, reviews, are
nice, but they don’t count as science.

Imagining different systems of credit assignment is easy: just make a new DOI-like
identifier for my datasets that I can put on my CV. Integrating systems of credit
assignment into commonly-held beliefs about what is valuable is harder. One way
to frame solutions to the credit assignment problem is as a collective action problem:
everyone/funding agencies/hiring committees just need to decide that publishing
data, reviewing, criticism et al. is valuable without any serious changes to broader
scientific infrastructure. As is hopefully obvious, the approach favored here is to
displace the system of credit assignment by aligning the interests of the broad array of
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researchers, technicians, and students that it directly impacts to build an alternative
that makes it irrelevant.

The sheer quantity of work that is currently uncredited in science is a structural
advantage to any more expansive system of credit assignment. The strategic ques-
tion is how to design a system that aligns the interests of enough people excluded
by the current system. Belief, as always, is a tricky circular process: how would the
people being evaluated come to believe in its value enough to contribute to it, and
how would the people doing the evaluation believe in its value enough to ignore the
analytics products by deeply embedded industries?

Everything that exists in this system is attributable to one or many equal peers. Rather
than attempting to be an abstract body of knowledge, clean and tidy, that conceals
its social underpinnings, we embrace its messy and pluralistic personality. We have
not been focused on some techno-utopian dream of automatically computing over
a system of universally linked data, but on representing and negotiating over a glob-
ally discontinuous body of work and ideas linked to people and groups. We have
not been imagining new platforms and services to suit a limited set of needs, but
on a set of tools and frameworks to let people work together to cumulatively build
what they need. What is different about this set of ideas is that it is not a new metric,
journal, or platform intended to be the new standard that replaces some small ele-
ment of the system, leaving the rest unchanged. We are taking a broad view on the
infrastructural deficits that define scientific work, learning from the broad histories
of attempts to remedy them, and trying to chart a course to building systems that
fill basic needs. The hope is to seed a critical mass of solidarity by organizing the
work to fill the unmet needs that structure the current system of evaluation, in the
process building a real alternative that makes the existing system look as ridiculous
as it is.

Credit is woven through the heart of this system: the basic operations of interacting
with someone else’s work are tied to crediting it. While credit is currently meted out
by proprietary scientometric tools like altmetric or Plum; downloading a dataset,
using an analysis tool, and so on should be directly attributable to one or several
digital identities that you control in the manner that you want.

The first-order effects for the usual suspects in need of credit are straightforward:
counting the number of analyses and papers our datasets are cited in, seeing the type
of experiments our software was used to perform. Control over the means of credit
assignment also opens the possibility of surfacing the work that happens invisibly
but is nonetheless essential for the normal operation of research. Why shouldn’t the
animal care technician receive credit for caring for the animals that were involved
with a study, its results, and its impact on science more broadly?

A name prominently displayed on a wiki page and a permalink for a CV is ok, but
clearly not enough. Foundational work like technical, communicative, and organi-
zational work is useful in itself, but its impact is mostly felt downstream in the work
it enables. Beyond first-order credit, a linked credit assignment system lets us eval-
uate higher-order effects of work that more closely resemble its impact. Say we find
someone else’s 3D Model, modify it for our use, and then use it to collect a dataset
and publish a paper. Someone else sees it and links a colleague to it, and they too
use it in their work. Over time someone else updates the design and puts it in some
derivative component. Most of the linking is automatic, built into the interfaces of
the relevant tools, and soon the network of links is dense and deep.

https://xkcd.com/927/
https://wiki.auto-pi-lot.com/index.php/3D_CAD
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The incentive to “freeload” by making the use of the system without credit is changed
by breaking apart the notion of unitary credit where one or a few people are respon-
sible for “all” of a work. Our current obsession with utter novelty and closed credit
removes incentives to extend someone else’s work: why would I help patch their
code? I won’t be added as an author on their paper. For us, instead of just getting
professional credit for our paper, we also get credit for extending someone else’s
work, for documenting it, and for the potentially large number of nth-order deriva-
tive uses. Our credit extends multimodally, including papers that cite papers that
use our tool, and the “amount” of credit can be contextualized because the type of
link between them is explicit – as opposed to the non-semantic links of citation. Our
colleague that recommended our part gets credit as well, as they should since help-
ful communication is presumably something we want to reward. Rather than the
scarcity mindset of authorship, a link-based system can push us towards abundance:
“good” work is work that engages with and extends a broad array of techniques, tech-
nologies, and expertise.

From the perspective of the worker, their extended contribution graph will always
be a superset of the things they would otherwise be credited for. The goal should
make it be something we prefer to share because it’s more reflective of our work.
Unlike proprietary metrics that will be increasingly based on surveillance data, our
system gives us control over which information we want to be part of our evaluative
profile, and it’s something that we own to do what we will with rather than the
product of some platform.

It’s easy to imagine extended credit scenarios for a broad array of workers: A grad
student rotating in a lab might not get enough data to make a paper, but they might
make some tangible improvement to lab infrastructure, which they can document
and receive credit for. Open source software developers might get some credit from
a code paper, but will be systematically undervalued from failure to cite it and under-
counted in derivative packages. The many groups of workers whose work is formally
excluded from scientific valuation are those with the most to gain by reimagining
credit systems, and an infrastructural plan that actively involves them and elevates
their work has a much broader base of labor, expertise, and potential for buy-in.

From the perspective of the evaluator, our contribution graph provides a much
richer space of evaluation while also eroding the notion of a scalar-valued ranking.
Some of my more communitarian colleagues might share my distaste for metriciz-
ing knowledge work — but hiring committees and granting agencies are going to
use some metric, the question is whether it’s a good reflection of our work and who
controls it. Our problems with the h-index (eg. [534, 535] ) are problems with pa-
per citations being a bad basis for evaluating scientific “value”, and their primacy
is in turn a consequence of the monopoly over scientific communication and or-
ganization by publishers and aggregators. Their successors, black box algorithmic
tools like SciVal with valuation criteria that are bad for science (but good for admin-
istrators) like ‘trendiness’ are here whether we like it or not. A transparent graph of
scientific credit at least gives the possibility for reimagining the more fundamental
questions of scientific valuation: assigning credit for communication, maintenance,
mentorship, and so on. So some misguided reductions of the complexity of scien-
tific labor to a single number are inevitable, but at least we’ll be able to see what
they’re based on and propose alternatives. The presence of many simultaneous met-
rics on the same underlying graph would be itself a demonstration of the inability of
any single metric to capture the value of our work. Conversely, spamming the graph
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to increase your “high score” with a large number of trivial contributions would be
straightforward to detect because of the likely shallowness of the graph, so micro-
commodification of labor is less likely. The incentives are aligned to do work that is
useful to others and positively affect the state of our understanding.

It’s true that some of these extended metrics are already possible to compute. One
could crawl package dependencies for code, or download the 100GB Crossref database
[536] and manually crunch our statistics, but being able to compute some means
of credit is very different than making it a normal part of doing and evaluating re-
search. The multimodality of credit assignment that’s possible with a linked data
system is part of its power: our work actually does have impacts across modalities,
and we should be able to represent that as part of our contribution to science.

Reaching a critical mass of linked tools and peers is not altogether necessary for them
to be useful, but critical mass may trigger a positive feedback loop for the develop-
ment of the system itself. Even in isolation, a semantic wiki is a better means of as-
signing credit than a handful of google docs, experimental tools that automatically
annotate data are better than a pile of .csv files, etc. Bridging two tools to share
credit is better than one tool in isolation, and more people using them are better
than fewer for any given user of the system. Lessons learned from STS, Computer-
Supported Cooperative Work (CSCW), pirates, wikis, forums, et al. make it clear
that the labor of maintaining and building the system can’t be invisible.

https://academictorrents.com/details/e4287cb7619999709f6e9db5c359dda17e93d515


11
Conclusion

To take stock:

To approach the deficits in the basic digital infrastructure of science, we divided
them into three domains: systems for sharing data, tools, and knowledge. These
map onto three rough patterns of infrastructure that define the current cloud or-
thodoxy era of the internet: storage, computation, and communication.

We traced the historical development of prior digital infrastructure projects to learn
from their successes and failures, conditioned as they are by the contingency and
combinatorics of the technologies that existed at the time. We started close at hand
within science, and ranged more broadly into lessons from internet protocols, pi-
rates, the semantic web and linked data, early wikis, and the fediverse/indieweb.

Our goal throughout was to sketch a realistic plan by which existing technologies
could make an emergent interoperable system that was expansive and evolving be-
yond the isolated use of its quasi-independent parts. Our sketch was intended to
be specific enough to be an actionable blueprint for dispersed groups to work in par-
allel, but general enough to allow refinement through inevitable complexity. We
attempted to balance several constraints, primarily technical capability and social
compatibility, but also simplicity and expressiveness, structure and permissiveness;
systems that are personal and scalable, respect privacy and empower mutual organi-
zation. We are neither politically nor economically neutral, and see the infrastruc-
tural deficits of science as reflective of information’s broader role as the currently
dominant mode of capital accumulation. Accordingly we are searching for system
design that can dismantle regimes of surveillance, extraction, and the commodifica-
tion of information to re-decentralize our digital technologies for people not profit.

The system we arrived at is based on p2p folksonomic linked data. Using exist-
ing data formats as an initial onramp, and overlays to bridge to incompatible me-
dia, our p2p system blends ideas from bittorrent, IPFS, and the Linked Data Plat-
form with metadata beneath a peer’s namespace indicating content-addressed bi-
nary data. Our metadata uses triplet links as a means of specifying multimodal
schema for data, tools, and social systems. We integrate our data in a complete
provenance chain from collection to use with metadata indicating code in an-
alytical frameworks and code indicating metadata in experimental frameworks.
The social reality of infrastructure is designed into the core of our system, with
peers forming overlapping federations with tracker-like overlays. A generalization
of documents as systems of recursive typed cells serve as an interface to, and rep-
resentation of the underlying data and metadata. From them we construct a fluid
and continuous system of documents, feedlike media, andwikis for communica-
tion and governance of the system. With this system, we satisfy the design goal of a
decentralized, protocol-driven infrastructure of linked data, tools, and knowledge.

So how do we build it?

http://www.bittorrent.org/beps/bep_0003.html
https://docs.ipfs.io/
https://www.w3.org/TR/ldp/
https://www.w3.org/TR/ldp/
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11.1 Tactics & Strategy

Don’t scab for the bosses / don’t listen to their lies / us poor folks haven’t got a
chance / unless we organize

Which side are you on?

Florence Reece (1931) Which Side Are You On?

Oh but they will mock us and they will mistreat us til they can replace us
all with an app or a kiosk, […]

All of the energy that I end up expending, I will get back in spades when the sys-
tems that necessitate all of this work fall apart…Andwe canwork for ourselves
for a change!

So we gotta work! Cuz none of our visions of a better tomorrow will come to
fruition without a whole lot of work!

RENT STRIKE (2021) Work! (Future Perfect) [537]

The primary ingredient needed to build decentralized infrastructure is will. The
incentive and professional systems of science are designed to make us build our own
cage: play along, or lose your job. We need to recognize that the contemporary prac-
tice of science is unsustainable without radical infrastructural, social, and economic
reorganization. As the logic of the digital enclosure movement transforms old en-
emies into new ones, publishers into surveillance conglomerates, the comfortable
familiarity of science as we know it will evaporate into the cloud as we cede control
over the direction of our work to for-profit companies with their gamified metrics
and platforms that commodify every part of it. The worst parts of scientific work
are neither natural nor inevitable, but reflect the overwhelming structuring power
of orbiting conglomerates. We are part of this world, and the world is drowning in an
algorithmic sea owned and operated by a rapidly consolidating cluster of informa-
tion giants. We need to see our place in a shared struggle, the relationship between
our deinfrastructuring and the operation of science — and have the courage to do
the work to counteract it.

The work doesn’t need to be as dreary as its motivation: rebuilding our infrastruc-
ture will be joyful. We have been starved for social and labor organization, for com-
radeship and compassion, isolated as we are on our workplace and disciplinary is-
lands, crushed under the weight of cutthroat publish-or-perish schemes, secretive
and distrustful from our culture of the heroic individual rushing through the gaunt-
let of credit before our enemies do. What we might lose in prestige we will regain in
collaboration with new and unexpected colleagues building tools to make our work
more fun. We can trade artificial scarcity for abundance.

11.1.1 Starting Points

Much of the tactical and strategic vision for our new infrastructure is embedded in
its design. We have taken pains to articulate its components as elaborations of exist-
ing and widely-used systems, keeping them separable so each can be independently
useful before a fuller system is realized, exemplifying them with the real problems
that they can remedy. Still, some more scaffolding for how to get there from here is
useful.

https://rentstrike.bandcamp.com/track/work-future-perfect-2
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The core of our strategy should be to organize alongside each other in a series of
independent groups working in parallel. We don’t need a new leadership council
to become a single point of failure. We should try and organize the many existing
groups working in different related areas to pull in the same direction towards in-
teroperability. We should avoid the pitfalls of designing our infrastructures “in the-
ory,” building crystal palaces removed from the reality of their use. We should seek
to embed in existing projects, using their existing mass to lessen the need to prospect
for abstract “early adopters.”

We should look outside our usual circles for collaborators, and there we might find
unexpected energy and expertise. Though the miserable academic fleeing to the
greener pasture of “industry” is now a well-trod trope, there is plenty of disaffection
on the other side. We shouldn’t underestimate the number of extremely talented
engineers that would do anything to not have to build tools so that Facebook can
mine your thoughts to target ads [538] or maximize the time people spend watch-
ing YouTube by recommending them increasingly toxic videos [539] . Academic
science is relatively unique in that it can marshal funding and labor for projects not
bound to profit. Resources and applications are two potent missing ingredients in
developing technologies that are intended to be anti-profitable, and we should work
to provide them. We should trawl the places where the decentralized messaging, for-
mer semantic web, indieweb, and small tech people are already working on building
better infrastructure and invite them to work with us.

The three broad domains of our infrastructure could, but don’t necessarily need to,
correspond to a division of development labor. The serial order of this piece is pri-
marily a byproduct of the constraint of the medium, and there is no reason we can’t
proceed in parallel. I want to avoid being too prescriptive here in order to invite in-
put from the many people that might potentially be involved — the purpose of this
document as a pre-development plan is to provide direction and a high-level design
so that the details can be sorted out as we work. For the sake of illustration, though
I’ll drop down from the level of strategy to tactics to flesh out some of the more
proximal possibilities for development, but the remainder of this section should be
considered non-normative.

A promising context to develop a p2p linked data client is existing collaborations or
tools that have a base of users that handle overlapping but variable data. For example,
the users or developers of a tool like OpenEphys [206] or Miniscope [208] that has
data acquisition software that outputs semi-structured data might be interested in
making it possible for everyone who uses the tool to share data with one another
from the time of acquisition. The situation is similar for other types of tools like
analysis tools, or for collaborations where people are sharing data frequently. Since
the output data is relatively simple (eg. videos and timestamps) with some variation
(eg. configuration and notes), it would be a smaller climb to prototype generating a
metadata model linked to the data. Since the group of people that would be sharing
data might initially be relatively small with room to grow, the several components
of the p2p client could be worked out separately: eg. manually index repositories of
metadata from some frontend while figuring out how to strap a git server to a p2p
client like hypercore, etc. Being able to be plugged into a group of people sharing
data by using a tool might be a reasonably attractive idea to get people to adopt the
tool, so it would be worthwhile to the developers while being a useful feature for
the users. Being able to do very tight loops of development and field testing might
make the tool more robust than if it were developed strictly in-house, and would be

http://miniscope.org/index.php/Data_Acquisition_Software
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a good small-scale demonstration of the utility of p2p.

At the same time, work could happen in the other direction from data standards
towards p2p. Datalad [413] would be an excellent candidate to add linked data and
p2p support to, as it already supports JSON-LD with a metadata extension and has a
generalizable data storage backend. In neuroscience, DANDI hosts data formatted
in NWB, and interoperability with IPFS is on its development timeline. Working
from multiple directions towards aligned projects could encourage a small set of
modular tools that can accommodate the variation in each of the approaches, and
the process would be useful for navigating the fine-scale constraints to the system
without putting all of the development eggs in one basket, so to speak.

Aside from p2p, a toolset that’s desperately needed across disciplines is an generaliz-
able, approachable means of modeling and ingesting data. The work of building an
interface that lets researchers create a JSON-LD metadata model and a declarative
description of where that metadata can be located in whatever lab-idiosyncratic for-
mat already exists would supplement all other parts of the system. There is no reason
for each format to develop a separate schema language and storage mechanism, and
this might be one way to spark collaboration between format maintainers.

One of the major reasons for bootstrapping the system with existing formats is to be
able encourage analytical and experimental tool interoperability before the means of
creating and negotiating over arbitrary schema are developed. This is already start-
ing to happen to a degree in neuroscience with datajoint elements [422] and NWB
(see pynapple), but since the conversion tooling for NWB at the moment is still
relatively opaque there isn’t strong incentive for analysis libraries to support it for
seamless input. A wrapper framework to be able to specify an analysis pipeline from
metadata that combines a few of these tools might be useful to kick off the positive
feedback loop of analysis toolbuilders building towards interoperability, incentiviz-
ing format conversion, etc.

The other major starting point for development I see is generalizing cellular docu-
ments with JSON-LD and mixing them with ActivityPub. With some relatively
minor extensions to the jupyter document format we could add the ability to cre-
ate new cell types with elaborated linked metadata. From there, we could build an
ActivityPub client that allows researchers to post their notebooks and invite com-
ment on them in a document/threaded communication medium. The support of
an existing organization would be useful here too: they could apply to be a crossref
member and make use of the very general specification [278] such that each post can
be given a hierarchical DOI like doi:10.<registrar>/user/post/version. Along
with the ability to automatically submit to legacy journals with the conversations
attached as supplemental material, this might attract a reasonable critical mass to-
wards a model that would make the move towards a p2p document/communication
a much smaller step. Neuromatch [540, 541, 542] has expressed interest in work in
this area, though at the time of writing their plans are still in development.

I’ll leave the remainder of the organization project to the work of the future.

11.1.2 ToWhom ItMay Concern…

This project should benefit everyone, but we all have different roles to play. Without
enumerating every possible category, a few love letters:

https://www.datalad.org/
http://docs.datalad.org/projects/metalad/
https://dandiarchive.org/
https://www.dandiarchive.org/#proposed-dandi-timeline
https://elements.datajoint.org/
https://nwb-overview.readthedocs.io/en/latest/tools/tools_home.html
https://github.com/PeyracheLab/pynapple/
https://neuromatch.io/
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PIs: Infrastructure is everyone’s responsibility! Diverting time towards organizing
the development of basic infrastructure seems expensive and risky, but the truly ex-
pensive thing is to do nothing. The quantity of time spent rebuilding everything
from scratch, debugging local code, contending with the journal system, resurrect-
ing old data, etc. for all but the most efficient labs is truly staggering. The absence
of collective organization makes PIs a sitting duck for profiteering: seeing the dif-
ficult resistance posed by library consortia, the open access model shifted towards
payments from individual PIs because they have little choice but to pay them on
their own. It is in your best interest to commit time to organize with others in your
discipline to build generalizable tools that you can share with other labs. We will
need you to help shake down funding to pay for development — it will be worth it.

It is also in your best interest to start closing ranks and collectively disavowing the
for-profit journals. The rationalization that you need prestige publications for the
sake of your trainees is plainly self-fulfilling: what it actually accomplishes is guar-
anteeing they have to endure the same grim circumstances you do. The best way to
support your trainees is to fight to fix our broken infrastructure! Individually you
may have little power, but if you organized your colleagues, starting in your depart-
ment and working out, to agree to never publish for-profit, the problem starts look-
ing very different. In tenure and hiring decisions, having no Nature papers looks
very different when you have been loudly organizing with your colleagues for the
health of science. Except for those at the extreme heights of the prestige economy,
you have perhaps the most to gain by getting off the treadmill.

Early Career Researchers: We don’t have much, but we can have each other! We
don’t have the leverage to make huge changes quickly, but but since we’re the ones
doing most of the work of building the tools for our research anyway, we should
also start organizing with our colleagues to share techniques and methods. As we
build infrastructure, coalescing into institutional collaboratives makes it that much
easier to organize across institutions. We shouldn’t fall into the trap laid for us work-
ing to the bone for a prestige publication — if we want to make academic science
something that we would actually want to work in, we can help shake the researchers
trained in prior generations out of complacency. A better world is out there!

Scientific Open Source Developers: We’ve got work to do! First, we need to start
making alliances with people we’re not necessarily used to, but that’s the fun part!
For those of us working outside the few major projects, the best thing we can do
is to start organizing our tools as broader infrastructure instead of one-off, single-
purpose tools. We should focus on designing our tools in such a way that they can
be integratable: as a small sample, that means spending time on good packaging
rather than throwing everything in a docker container, making APIs that are clear
in what they expect and return, and well-contained configuration and parameteri-
zation. If our tools aren’t already part of a broader framework, we should work on
that first! We should avoid cloud dependency when possible: if it is necessary, make
sure that it can also be deployed locally just as easily. We should also emphasize
multi-scale interfaces: instead of just exposing a set of top-level functions, it should
also be possible for someone else to understand its internal operations, otherwise
interoperability becomes a distant dream. At the risk of being preachy as a younger
developer, the most important thing we can do is organize and be organizable.

Funding Agencies: You are being swindled! Partnership with the cloud industry
is a recipe for burning ever-larger portions of your funding allocations on systems
that only become harder to walk away from with time. Open source is your friend.
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Rather than funding projects piecemeal, or funding massive top-down projects with
little user engagement, it needs to be possible to receive funding for projects that
fill fundamental cross-disciplinary infrastructural gaps. We need to figure out some
way of breaking the catch-22 of scientific software development where only projects
with demonstrated uptake can receive funding, but it is difficult to start projects in-
tended to address large problems without funding. Scientific funders already do
fund a large amount of open source development, and I am not proposing an al-
ternative model here, except to say that the energy and expertise is there to build
open-source infrastructure that avoids creating another triple-dip industry.

University Administrators: You’re also being swindled! The disorganized smat-
tering of SaaS that serves as the infrastructure of many universities [543] is a short-
run bandaid that makes operations more fragile in the long-term! Putting your re-
sources behind organizing institutional and regional infrastructure is a better PR
story and far more attractive when recruiting than how large of an AWS subscrip-
tion you have [310] . University libraries shoulder a huge burden of the cost of the
for-profit publishing system, and so you should have every incentive to cut ties —
instead of open access mandates, we need you lobbing on behalf of all of us to end
the for-profit system.

11.2 Limitations

To get a few big and obvious limitations out of the way first: - Everyone could ignore
this piece entirely and it is dead on arrival. - This project would be a direct threat
to some of the most powerful entities in science, and they will likely actively work
against it. - Despite my best efforts, I could be completely misinformed and missing
something fundamental about the underlying technologies. - The social tensions
between the relevant development communities could be too great to overcome.

Beyond those, there are several open questions that deserve further consideration,
particularly those things concerning cryptography as it is squarely outside my do-
main of expertise:

Identity: Identity is extremely challenging for any decentralized system. An iden-
tity needs to be unique, difficult to counterfeit, easy to verify, easy to manage or re-
cover, and also recognizable if not memorable — and several of these requirements
are clearly in conflict. A satisfying resolution of identity will require guidance from
cryptographers, but the design of our system has some features that make identity
a less-than-intractable problem. The actual raw identifier itself will likely need to
be a cryptographic hash of a public key (as in IPFS) for uniqueness and verifiability,
but they are very far from memorable. One approach might be to have each peer
provide a signed identification object that can be publicly queried with a shorter
handle or username, which can then be stored by the peers that follow or befriend
them. When peer A refers to peer B’s namespace, then, it would be in reference
to peer A’s follow/friends list. Another approach is to use an RDF-like prefixing
idea: in a given context, a short name for a peer’s hash is always explicitly declared
first before using it. Neither of these are entirely satisfying, and will require a bit of
experimentation to get right.

The problem of managing keys and recoverability is also tricky: there’s no “forgot
password” link if you lose your private key. Since our system is designed to be in-
trinsically social, we can relax some of the more stringent requirements of zero-trust,
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totally-anonymous networks like IPFS and lean more on a “web of trust.” We might
share additional private keys with other peers that we trust to verify or recover our
identity, which might be particularly useful in the case of a more stable federation
of peers. We want to avoid peers operating like identity systems, as that lends itself
to centralization of power and returning to a more activitypub-like style of identity,
so it would be a tricky balance. Another strategy might be to use an out-of-band
mechanism, like storing a URL in the signed identity object that can be used to up-
date the public key associated with a particular identity – if you lose yours, you can
generate a new keypair and update the public key stored at the URL, which another
peer could check to verify that you are who you say you are. These too are not very
satisfying, and so more work will be needed to draft a satisfying identity system, the
practicality and usability of which will be critical for its success.

Privacy: Closely related to identity, in a p2p system any message that isn’t intended
to be public will need to be encrypted so that secondary peers can’t just reshare some-
thing we intended to be only for them. In our system, it’s not desirable to be able
for some data-greedy entity to scrape all the data, we want peers to be able to make
friction as-needed. To some degree this is not a solvable problem, as it’s always pos-
sible to take a screenshot of the most secure end-to-end encrypted chat. It’s possible
even in analog social systems for secrets to slip, or for people to lie about something
that another person said, so arguably the question is how to protect the things that
can be verified to be from a person. Another practical problem is communicating
which peers are allowed to see something so that a secondary peer knows whether
or not they can help seed something: we don’t want to have to transmit a list of a
thousand peers along with every message, and if they have to ask the primary peer ev-
ery time then the redundancy of the system is lost. Capability-based security, where
permissions for a given object are conferred by having a hard to guess reference to it
rather than by checking an easy to guess reference against a permissions list, seems
like a good approach (see [544] ). This would look a bit like generating (revocable)
sharing links for different groups. Here too we might lean a bit on the social nature
of our system, where peers that routinely violate the privacy requirements of other
peers can be labeled untrustworthy.

Security: Most parts of this system are relatively low-risk as they are based on meta-
data that only relies on defined actions programmed into the receiving client — you
don’t get viruses merely by torrenting something. Several of the more interesting
applications, though, involve a message or link being able to self-identify some code
used to run or display it, and whenever you introduce running arbitrary code you
introduce significant security risks. This is largely mitigated by our emphasis on
non-automaticity: the default for any of these cases should be to not do the action.
That’s cold comfort, though, given the high clickthrough rates for phishing emails.
More mitigation can be had by executing code in containers or virtual machines,
but that too is not total. We manage to get by extraordinarily well with a very infor-
mal reputation system in open source computing. For the most part, people don’t
think twice about running some Python package without reading the full source
code. Our system is one very conducive to soft security [545] , which is based more
on accountability and resiliance than strict guarantees of security. Where typically
an untrustworthy platform will do whatever it can to avoid people being able to leave
comments or talk about it, in our linked data system it’s always possible to issue a
link saying that something is not to be trustworthy. The ability to mirror shards of
our data makes any particular attack more likely to be recoverable, but special care
will be needed to ensure the whole network is not subject to rolling waves of ran-

http://meatballwiki.org/wiki/?SoftSecurity
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somware. Like cryptographers, we’ll need consultation and input from the infosec
crowd to make it safe, but there’s nothing intrinsically more dangerous than, say,
pip being able to run arbitrary code inside a setup.py file.

RDF Standards: RDF is highly polarizing, and many people have written it off as
a lost cause because it is too complex. Much of the computing world runs off of
table and relational databases rather than graphs. Though we tried to be careful to
avoid endorsing any particular technology in favor of thinking about triplet links
as such, the question of the literal implementation of the standards is an inevitable
one. JSON-LD is, thankfully, a relatively humane standard that should be the first
point of exploration. We should consider interconvertibility and interoperability
with existing standards a top priority of the system in general, so we will need to
make interfaces to make it trivial to interact with commonly used formats, even if
it is just a wrapper that indicates the format rather than one that can convert it to
JSON-LD. Interface design is one of the major missing pieces in the linked data story,
and that too should be a top priority so that as little of the system as possible needs
to rely on directly interfacing with the underlying data model.

Performance: We have more or less explicitly cast performance aside as the wrong
thing to optimize for: we want to have autonomymore than be able to blaze through
the network in microseconds. Still, it’s possible for technologies to be so inefficient
to be nonfunctional. In a world where we have been conditioned to expect to be
able to speak with a manager when our apps are not immediately responsive, or
to be able to just buy whatever server performance we want, it will take some col-
lective unlearning to rethink the internet along the lines of cooperatively managed
resources. Unlearning performance will take time and has no boardroom-friendly
KPIs to measure. There’s no reason to believe the system will be slow before it exists,
and we ultimately don’t imagine this system running from residential connections
and personal computers, but being a mixture of institutional and personal resources.
Decentralization is a continuum, rather than a binary: we don’t have to ban large
servers from the network, but instead want to make sure that there is a healthy mix
so that the system doesn’t depend on them. This is another place where it is use-
ful to seed this from academia: internet service providers have historically leaned
on their oligopolistic control over the underlying hardware of the internet to crush
threatening technologies [546] , and we should expect no different this time. We
will need to have access to commercial connections, and will likely need to convince
our institutions to lobby on our behalf.

Manipulation: What if people lie? What if people purposefully rig the system by
seeding it with a bunch of fake data and bad papers? People already lie! People
already game the system! What we are hoping to change is to make a system where
manipulation isn’t built into the system as a self-reinforcing partnership between its
proprieters and beneficiaries. The real dangerous thing is a system that presents itself
as being infallible or neutral through its automaticity and glittering PR campaign.
This is why we have baked the social contingency of the system so thoroughly into its
design (and should investigate making triplet links into quadruple links with each
having an explicit author to make it even more concrete). This is why, I believe,
it is so difficult for some people to imagine a world without pre-publication peer
review vouched for by a journal: the social contingency of information is scary! It
is, however, preferable to the economic contingency of factuality-as-a-service.

The last set of concerns are diffuse rumblings about uptake and whether or not it
is even still possible to challenge entrenched economic powers in science. It is true
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that people are cynical, and busy, and some benefit immensely from the present sys-
tem, and so on. It is also true that we are likely to be met with stiff resistance if we
start posing a credible threat to their dominance — the danger of opposing a set of
companies who are the primary data brokers to federal law enforcement agencies,
credit rating, and insurance agencies is not lost on me. I don’t have any good an-
swers to these sets of questions except that the work from here is about organizing
people, adapting and responding to their needs, and making something that is use-
ful enough for even the most complacent to adopt. I don’t present this blueprint
for infrastructure as infallible, and intend it to be mutated and merged with other
ideas as we progress. The only thing that isn’t an option is doing nothing.

11.3 In Closing

Infrastructure isn’t just a technical, or even social project: it’s also ethical. We started
by outlining the harms of our infrastructural deficits for science, many of which
are widely seen as normal, or otherwise inevitable. Some harms are only possible to
recognize when it’s possible to imagine an alternative to the system that causes them.
This project was an attempt to help us imagine what science can be like as a guide
and inspiration for us to organize to make it real. I didn’t get everything right, and I
probably raised more problems than I addressed. My goal more than to be right was
to give a fistful of threads to pull for those that are eager to, and to make it impossible
to say that a better future for science is impossible. If all we can imagine science to
be is a system where we scrape by, forcing a chain of papers through a rapacious
machine that turns curiosity into a treadmill of funding and prestige, playing out
the clock as our working conditions deteriorate to the point where publicly funded
science is nothing more than a training program for pharmaceutical and advertising
companies — what are we even doing here?

Infrastructure isn’t a distraction from science or something to put off as the work
of a diffuse someone else. It’s not even an ill-defined alternative cynics use to grand-
stand about how much they know about how bad everything is. Collectively built
infrastructure is the best way for us to make science continue to be possible. We of-
ten focus on the problems of science in isolation: what do we do about the journals,
how do we make scientific software more sustainable, why is it so hard to share data.
My central argument is that the only way we will address any of these problems is by
considering the system as a whole. Rather than being a utopian vision of ripping it
out from the root and starting anew in one fell swoop, considering the whole system
is how we turn nibbles around the edges into coordinated mass movement. It’s less
about this vision matching exactly what we end up building, but making it possi-
ble for the many diverse and dispersed people who care about different facets of the
problem to see it as a shared project.

Beyond any technology, my hope is that by organizing together to build something
that helps us organize better, that we can re-commit to working for, instead of against
each other. Some of our deeper problems like the neoliberalization of universities
will only be possible to approach with a renewed sense of ourselves as often priv-
ileged, but nonetheless exploited labor. I am the first to admit my naïveté, but I
think a nontrivial part of the lack of labor consciousness in science is the way our
systems of work, communication, and evaluation feed back into an individualist cel-
ebration of the hero of knowledge. Maybe by rebuilding those systems to support
the abundance of cooperation and make collective organization a central part of our
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work can help us both do better science and make science better (also see [547] ).

Science for science’s sake also misses the point. The dominant stories we tell of how
science can give back to society are also shot through with market individualism:
become a scicomm influencer, or found a start-up. Instead of giving back to a so-
ciety that we are somehow separate from, we can take our part in shared struggle
seriously, like the graduate workers at Columbia and Harvard who did us all proud
by fighting like hell through the strike wave this year and last [548, 549] . Even for
the most basic research-oriented, the problem of informational dominance in the
21st century tolls for thee. Systems like those described here could serve as a basis
for a new kind of digital infrastructure that challenges the basic platform model of
the internet more broadly [550] . What are the three to five remaining websites but
data storage, computation, and communication systems? By organizing to make
our own work better, we might also seed the systems that help reclaim digital infras-
tructure as something that empowers everyone, rather than uses our urge to connect
with each other to control us.

It was scientists1 looking for a better way to communicate that created the internet 1 With funding from the military
in the first place, radically rewriting the course of history [551] — and we can do it
again.

11.4 Contrasting Visions of Science

Through this text I have tried to sketch in parallel a potentially liberatory infrastruc-
tural future with the many offramps and alternatives that could lead us astray, but
to make two of those futures clearer, it’s worth imagining them outright.

11.4.1 What if we do nothing?

You’re a researcher with dead-center median funding at an institute with dead-center
median prestige, and you have a new idea.

The publishing industry has built its surveillance systems into much of the practice
of science: their SeamlessAccess login system and browser fingerprinting harvest
your reading patterns across the web[552, 553, 554, 555, 556] , Mendeley watches
what you highlight and how you organize papers, and with a data sharing agreement
with Google crossreference and deanonymize your drafts in progress [214] . Man-
aging constant surveillance is a normal part of doing science now, so when reading
papers you are careful to always use a VPN, stay off the WiFi whenever possible, ran-
domly scroll around the page to appear productive while the PDF is printing to read
offline. The publishers have finally managed to kill sci-hub with a combination of
litigation and lobbying universities to implement mandatory multifactor authenti-
cation, cutting off their ability to scrape new papers. The few papers you’re able to
find, and fewer that you’re able to access, after several weeks of carefully covering
your tracks while hopping citation trees make you think your hunch might be right
— you’re on to something.

This is a perfect project for a collaboration with an old colleague from back in grad
school. Their SciVal Ranking is a little low, so you’re taking a risk by working with
them, but friendship has to be worth something right? “Don’t tell me I never did
nothing for you.” You haven’t spoken in many years though, so you have to be care-
ful on your approach. The repackaged products of all their surveillance are sold
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back to the few top-tier labs able to afford the hype-prediction products that steer
all of their research programs [557, 558] . The publishers sell tips on what’s hot,
and since they sell the same products to granting agencies and control the publish-
ing process, every prediction can be self-fulfilling — the product is plainly prestige,
and the product is good. If you approach your colleague carelessly, they could turn
around and plug the idea into the algorithm to check its score, tipping off the larger
labs that can turn their armies of postdocs on a dime to pounce. There is no keeping
up with the elites anymore.

Even if you do manage to keep it a secret, it’ll be a hard road to pull off the experi-
ment at all. There are a few scattered open source tools left, but the rest have been
salami sliced into a few dozen mutually incompatible platforms (compatibility only
available with the HyperGold Editions). The larger labs are able to afford all the en-
gineers they need to build tools, but have little reason to share any of the technical
knowledge with the rest of us — why should they spoil the chance to spin it off into
a startup? There aren’t any jobs left in academia anyway.

Industry capture has crept into ever more of the little grant funding you have, all the
subscriptions and fees add up, so you can only afford to mentor one grad student
at a time while keeping plausibly up to date with new instrument technology. You
can’t choose who they are anymore really. The candidate ranking algorithms have
thoroughly baked the exclusionary biases of the history of science into the pool of
applicants[214, 222] , so the only ones left are those who have been playing to the
algorithm since they were in middle school. Advocates for any sort of diversity in
academia are long gone. We’ve never been able to confirm it, but everyone knows
that the publishers tip the scales of the algorithm to downrank anyone who starts
organizing against them.

Your colleague and you manage to coordinate. they’re the same as they’ve always
been, trustworthy. You really need someone from a different field at least in consul-
tation, but there isn’t really a good way to find who would be a good fit. Somehow
Twitter is still the best way to communicate at large, but you’ve never really gotten
how it works and the discourse has gotten dark so you don’t have enough followers
to reach outside your small bubble of friends. You decide to go it your own, and
find the best papers you can from what you think is the right literature base, but
there’s no good way of knowing you’re following the right track. Maybe that part
of the paper is for the supplement.

Data is expensive, if you can find it. Who can pay the egress costs for several TB any-
more? You forego some modeling that would help with designing the experiment
because you don’t have the right subscription to access the data you need. You’ll
have to wait until there is a promotional event to to get some from a Science Influ-
encer.

You experiment in public silence until you’ve collected your data. Phew, probably
safe from getting scooped. You start the long slog of batch analysis with the scraps
of Cloud Compute time you can afford.

Papers are largely unchanged, still the same old PDFs. They’re a source of grim
nostalgia, at least we’ll always have PDF. What has changed is citation: since it’s
the major component of the ranking algorithm, nobody cites to reference ideas any-
more, just to try and keep their colleagues afloat. The researchers who still care about
the state of science publish a parallel list of citations for those who still care to read
them, but most just ignore them — the past is irrelevant anyway, the only way to
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stay afloat is hunting hype. You know this is distorting the literature base, feeding
the algorithm junk data that will steer the research recommendations off course, but
you don’t want to see your colleague down the hall fired [222] . Their rankings have
been sinking lately.

Uploading preprints is expensive now too, and they charge by the version, so you
make sure you’ve checked every letter before sending it off. It’s a really compelling
bit of science, some of that old style science, fundamental mechanisms, basic re-
search kind of stuff. You check your social media metrics to perfectly time your
posts about it, click send, and wait. Your friends reply with their congratulations,
glad you managed to pull it off, but there’s not really a lot that can be made a meme
of, and it’s not inflammatory enough to bait a sea of hot takes. You watch your Alt-
metric idle and sigh. You won’t get a rankings boost, but at least it looks like you’re
safe from sinking for awhile.

You’re going to take a few weeks off before starting the multi-year process of pub-
lication. Few researchers are willing to review for free anymore, everyone is sick of
publisher profiteering, but we didn’t manage to build an alternative in time, and
now it’s too dangerous to try. Triage at the top of the journal prestige hierarchy
is ruthless. Most submissions not pre-coordinated with the editor are pre-desk re-
jected after failing any one of the dozen or so benchmarks for “quality” and trendi-
ness crunched by their black box algorithms. Instead we ping-pong papers down
the hierarchy, paying submission fees all along the way. Don’t worry, there’s always
some journal that will take any work — they want the publication fees in any case.
If you’re cynically playing the metrics game, you can rely on the class of blatantly
sacrificial junk journals that can be hastily folded up when some unpaid PubPeer
blogger manages to summon enough outrage on social media. We haven’t managed
to fix the problems with peer review that favor in-crowd, clickbait-friendly, though
not necessarily reproducible, research. It turned out to have been a feature, not a
bug for their profit model all along.

You’re not sure if you’ve made a contribution to the field, there isn’t any sense of
cumulative consensus on basic problems. People study things that are similar to you,
lots of them, and you talk. You forget what they’ve been doing sometimes, though,
and you catch what you can. You like your work, and even find value in it. You can
forget about the rest when you do it. And you like your lab. The system isn’t perfect
but everyone knows that. Some good science still gets done, you see it all the time
from the people you respect. It’s a lot of work to keep track of, at least without the
subscription. But you managed to make it through another round. That feels ok
for now. And it’s not your job, your job is to do science.

The attention span of your discipline has gotten shorter and shorter, twisting in
concentric hype cycles, the new rota fortuna. It’s good business, keeping research
programs moving helps the other end of the recommendation system. It started
with advertising that looked like research [377] , but the ability to sell influence over
the course of basic science turned out to be particularly lucrative. Just little nudges
here and there, you know, just supply responding to demand. They turn a blind eye
to the botnets hired to manipulate trending research topics by simulating waves of
clicks and scrolls. More clicks, more ads, the market speaks, everybody wins.

The publishers are just one piece of the interlocking swarm of the information econ-
omy. The publishers sell their data to all the others, and buy whatever they need to
complete their profiles. They move in lockstep: profit together, lobby together. The
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US Supreme Court is expected to legalize copyrighting facts soon, opening up new
markets for renting licenses to research by topic area. No one really notices intellec-
tual property expansions anymore. There are more papers than ever, but the science
is all “fake news.” Nobody reads it anyway.

11.4.2 What we could build

You’re a researcher with dead-center median funding at an institute with dead-center
median prestige, and you have a new idea.

You are federated with a few organizations in your subdiscipline that have agreed to
share their full namespaces, as well as a broader, public multidisciplinary indexing
federation that organizes metadata more coarsely. You navigate to a few nodes in
the public index that track work from some related research questions. You’re able
to find a number of forum conversations, blog posts, and notebooks in the inter-
section between the question nodes, but none that are exactly what you’re thinking
about. There’s no such thing as paywalls anymore, but some of the researchers have
requested to be credited on view, so you accept the prompts that make a read link
between you and their work. You can tell relatively quickly that there is affirmatively
a gap in understanding here, rather than needing to spend weeks reading to rule it
out by process of elimination — you’re on to something.

You request access to some of the private sections of federations that claim to have
data related to the question nodes. They have some writing, data, and code public,
but the data you’re after is very raw and was never written up — just left with a refer-
ence to a topic in case someone else wanted to use it later. Most accept you since they
can see your affiliation in good standing with people and federations they know and
trust. Others are a little more cagey, asking that you request again when you have a
more developed project rather than just looking around so they can direct your per-
missions more finely, or else not responding at all. The price of privacy, autonomy,
and consent: we might grumble about it sometimes, but all things considered are
glad to pay it.

Your home federations have a few different names for things than those you’ve joined,
so you spend a few hours making some new mappings between your communities,
and send them along with some terms they don’t have but you think might be use-
ful for them and post them to their link proposals inbox. They each have their own
governance process to approve the links and associate them with their namespace,
but in the meantime they exist on yours so you use them to start gathering and link-
ing data from a few different disciplines to answer some preliminary questions you
have. In the course of feeling out a project, you’ve made some new connections be-
tween communities, concepts, and formats, and made incremental improvements
on knowledge organization in multiple fields. You’re rehosting some of their data as
a gesture of good faith, because you’re using it and it’s become part of your project,
(and because a few of the federations have ratio requirements).

You do some preliminary analysis to refine your hypotheses and direct the experi-
mental design. You are able to find some analysis code from your new colleagues in
a notebook linked to the data of theirs that you’re using. It doesn’t do exactly what
you want, but you’re able to extend it to do a variation on the analysis and link it
from their code in case anyone else wants to do something similar.

You post a notebook of some preliminary results from your secondary analysis and
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a brief description of your idea and experimental plan in a thread that is transcluded
between the forums of the now several federations involved in your project. There’s
little reason to fear being scooped: since you’re in public conversation with a lot of
the people in the relevant research areas, and have been linking your work to the
concepts and groups that any competitor also would have to, it doesn’t really make
sense to try and rush out a result faster than you to take credit for your ideas. All the
provenance of your conversations and analyses is already public, and so if someone
did try and take credit for your idea, you would be able to link to their work with
some “uncredited derivation” link.

In the thread, several people from another discipline point out that they have already
done some of what you planned to do, so you link to their post to give them credit for
pointing you in the right direction and transclude the relevant work in your project.
Others spitball some ideas for refinements to the experiment, and try out alternate
analysis strategies on your preliminary results. It’s interesting and useful, you hadn’t
thought about it that way. They give you access to some of their nonpublic datasets
that they never had a chance to write up. It’ll be useful in combination with your
experimental results, and in the process you’ll be helping them analyze and interpret
their unused data.

You’re ready to start your experiment. They say an hour in the library is worth a
thousand at the bench, and your preliminary work has let you skip about a third
of what you had initially planned to do. The project gives credit and attribution to
the many people whose work you are building on and who have helped you so far,
and has been made richer from the discussion and half dozen alternative analyses
proposed and linked from your thread.

Some of the techniques and instruments are new to you, but you’re able to piece
together how they work by surfing between the quasi-continuous wikis shared be-
tween federations. Hardware still costs money, but since most people able to make
do with less specialized scientific instruments because of the wealth of DIY instru-
ment documentation, and scientists are able to maintain grant funded nonprofit
instrument fabrication organizations because their work is appropriately credited
by the work that uses them, it’s a lot less expensive. You try out some parameter sets
and experiment scripts in your experimental software linked by some technical de-
velopers in the other fields. You get to skip a lot of the fine tuning by making use of
the contextual knowledge: less dead ends on the wrong equipment, not having to
rediscover the subtleties of how the parameters interact, knowing that the animals
do the experiment better if the second phase is delayed by a second or two more
than you’d usually think. Your experimental software lets you automatically return
the favor, linking your new parameters and experimental scripts as extensions of the
prior work.

While you were planning and discussing your experiment you had been contribut-
ing your lab’s computing hardware to a computational co-op so other people could
deploy analyses on it while it was idle. Now you have some credit stored up and dis-
tribute the chunks of your analysis across the network. It takes a little bit of tweaking
to get some of the more resource-intensive analysis steps to work on the available ma-
chines. You don’t have time to organize a full pull request to the main analysis code,
but if someone wants to do something similar they’ll be able to find your version
since it’s linked to the main library as well as the rest of your project.

You combine the various intermediary results you have posted and been discussing
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in the forums into a more formal piece of writing. You need to engage with the legacy
scientific literature for context, so you highlight the segments you need and make di-
rect reference to and transclude the arguments that they are making in your piece.
While you’re writing you annotate inline how your work [[extends::@oldWork]]
because it[[hasPerspective::@newDiscipline]]. Some of your results[[contradict::@oldWork:a-claim]]
and so the people who have published work affirming it are notified and invited to
comment.

There isn’t any need for explicit peer review to confirm your work as “real science”
or not. The social production of science is very visible already, and the smaller pieces
you have been discussing publicly are densely contextualized by affirmative and skep-
tical voices from the several disciplines you were engaging with. You have @public
annotations enabled on my writing, so anyone reading my work is able to see the in-
bound links from others highlighting and commenting on it. Submitting in smaller
pieces with continual feedback has let you steer your work in more useful directions
than your initial experimental plan, so you’ve already been in contact with many
of the people who would otherwise have been your biggest skeptics and partially
addressed their concerns. People are used to assessing the social context of a work:
the interfaces make it visually obvious that work that has few annotations, a narrow
link tree, or has a really restricted circle of people able to annotate it has relatively
less support. When a previously well-supported set of ideas is called into question
by new methods or measurements, it’s straightforward to explore how its contextual
understanding has changed over time.

It’s rare for people to submit massive singular works with little public engagement
beforehand. There isn’t a lot of reward for minimal authorship because the notion
of “authorship” has been dissolved in favor of fluid and continuous credit assign-
ment — engaging with little prior work and making few contributions to the data
and tooling where it would have been obvious to do so is generally seen as antiso-
cial. They are in the unenviable position of having sunk several years of work into a
flawed experimental design that many people in the community could have warned
about and helped with, but now since the criticisms are annotated on their work
they likely will have to do yet more work if they can’t be adequately addressed or
dismissed. We don’t miss the old system of peer review.

It’s clear that you have made a contribution to not only your field, but several that
you collaborated with. Your project is a lot more than a single PDF: you can see
(and be credited for) the links between data formats, communities, forum posts,
notebooks, analytical tools, theories, etc. that you created. It’s clear how your work
relates to and extends prior work because you were engaging with the structure of
scientific research throughout. Your work implies further open questions in the
open spaces in the concept graphs of several different research communities, and
can organize future experiments without the need for explicit coordination.

There are a dozen or so metrics that are used to evaluate research and researchers.
None of them are exactly neutral, and there is ongoing debate about the meaning
and use of each since there are so many modalities of credit in a given person’s graph.
There isn’t such a thing as a proprietary metric though, because no company has
a monopoly on proprietary information that they could say makes it unique, and
why would you trust a random number given by a company when there are plenty
of ways to measure the public credit graphs? It’s relatively hard to game the system,
there aren’t any proprietary algorithms to fool, and trust is a social process based on
mutual affiliation instead of a filter bubble.
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The public inspectability of scientific results, the lowered barriers to scientific com-
munication, and ability to find research and researchers without specialized training
has dramatically changed between science and the public at large. It’s straightfor-
ward to find a community of scientists for a given topic and ask questions in the
public community forums. Scientific communication resembles the modes of com-
munication most people are familiar with, and have shed some of the stilted formal-
ity that made it impenetrable. There isn’t such a firm boundary between ‘scientist’
and ‘nonscientist’ because anyone can make use of public data and community clus-
ters to make arguments on the same forums and feeds that the scientists do with the
same mechanism of credit assignment.

Scientists, building new systems of communication and tooling and then seeding
them with their communities has provided alternatives to some of the platforms
that dominated the earlier web. The scientists were able to use some of their la-
bor and funding to overcome the development problems of prior alternatives, so
they are just as easy to use as (and much more fun than) platforms like Twitter and
Facebook. Their well-documented and easily deployed experimental hardware and
software has empowered a new generation of DIY enthusiasts, making it possible
for many people to build low-cost networked electronics to avoid the surveillance
of the ad-based “Internet of Things,” air quality sensors, medical devices, wireless
meshnets, and so on. The scientists helped make controlling and using personal
data much more accessible and fluid. We now control our own medical data and
selectively share it as-needed with healthcare providers. Mass genetics databases col-
lected by companies like 23andme and abused by law enforcement slowly fall out of
date because we can do anything the geneticists can do.

By taking seriously the obligation conferred by their stewardship of the human knowl-
edge project, the scientists rebuilt their infrastructure to serve the public good in-
stead of the companies that parasitize it. In the process they did their part ending
some of the worst harms of the era of global information oligopoly.

Most things aren’t completely automatic or infinite, but you don’t want them to be.
It’s nice to negotiate with your federations and communities, it makes you feel like a
person instead of a product. Being in a silent room where algorithms shimmer data
as a dark wind friction-free through the clouds sounds lonely. Now we are the winds
and clouds and the birds that gossip between them, and all the chatter reminds us
that we forgot what we were taught to want. You take the hiccups and errors and
dead links as the work of the world we built together.

Everything is a little rough, a little gestural, and all very human.

[? ]
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